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We examine nuclear scission within a fully quantum-mechanical microscopic framework, focusing on

the nonlocal aspects of the theory. Using 240Pu hot fission as an example, we discuss the identification of

the fragments and the calculation of their kinetic, excitation, and interaction energies, through the

localization of the orbital wave functions. We show that the disentanglement of the fragment wave

functions is essential to the quantum-mechanical definition of scission and the calculation of physical

observables. Finally, we discuss the fragments’ prescission excitation mechanisms and give a nonadiabatic

description of their evolution beyond scission.
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Nuclear scission, the process wherein a nucleus breaks
into two or more fragments, poses a fundamental challenge
to quantum many-body theory: scission implies a separa-
tion of the nucleus into independent fragments, while the
Pauli exclusion principle introduces a persistent correla-
tion between the fragments, no matter how far apart they
are. The objective of this Letter is to resolve this paradox
by disentangling the fragments in a fully quantum-
mechanical description that is consistent with experimental
data. In addition to shedding light on fundamental aspects
of many-body physics, a microscopic theory of scission is
needed to make reliable predictions of fission-fragment
properties, such as their excitation and kinetic energies,
and their shapes. In particular, we revisit in a microscopic
approach the question of the energy partition between light
and heavy fragments, which was addressed in a recent
letter [1] within a statistical-mechanic treatment. While
many technical challenges remain in the 70 yr quest to
develop a predictive theory of fission, understanding scis-
sion remains a formidable conceptual obstacle to such a
theory.

Previous descriptions of scission have always been for-
mulated within the context of a local nuclear density, with
an identifiable neck joining two prefragments. The neck
ruptures at some point along its length, and all the matter to
one side or the other of the rupture is relegated to the
corresponding fragment. Despite its usefulness, this is
ultimately a classical view of scission. In 1959 [2], this
picture was used to qualitatively account for the different
observed mass divisions in fission and the well-known
‘‘sawtooth’’ shape of the average neutron-multiplicity dis-
tribution. Later on, a more quantitative description of the
nuclear shape was introduced [3], and scission was equated
with a vanishing neck size. This criterion was later im-
proved [4] by requiring that scission occurs when the
Coulomb repulsion exceeds the attractive nuclear force
between the fragments. Nörenberg [5] took a step toward
a more microscopic description using a molecular model of
fission calculated in a two-center Hartree-Fockþ BCS

approach. Bonneau et al.. [6] used separate microscopic
calculations of each fragment and a phenomenological
nuclear interaction between them to define a scission cri-
terion based on the ratio of their mutual nuclear and
Coulomb energies. In recent calculations [7–9] the entire
fissioning nucleus was treated within a single microscopic
framework and the properties of the nucleus at scission
were calculated. In those calculations, however, the iden-
tification of scission and calculations of fragment proper-
ties still relied on the nuclear density. In contrast to
previous approaches, we present here a fully quantum-
mechanical description of scission that accounts for the
nonlocality of the many-body wave function of the nu-
cleus. The need for, and difficulty of disentangling the
fragment wave functions was alluded to in [6]. Our solu-
tion is in the spirit of the localized molecular orbital
technique used in molecular physics [10]: as explained
below, we extend the localized molecular orbital concept
to localize individual quasiparticle orbitals on the frag-
ments while the nucleons themselves, described by a
Bogoliubov vacuum built from these states, remain delo-
calized. In this way, we are able to recognize the fragments
and their interaction energy progressively, as we approach
scission. This powerful technique has never been used to
describe nuclear scission before.
The work described in this paper is based on constrained

Hartree-Fock-Bogoliubov (HFB) calculations of 240Pu
with a finite-range (D1S) interaction. Details of the calcu-
lation are given in [9]. We have chosen to focus on the hot-
scission point with a constrained quadrupole moment
Q20 ¼ 370 b [11], and used the constraint on neck size
QN to approach scission. This constraint, defined in [9],
lets us vary the number of particles in the neck region. HFB
calculations produce self-consistent solutions that mini-
mize the total energy of the nucleus. In order to describe
the nucleus near scission, we introduce here the additional
requirement that the interaction energy between prefrag-
ments must be minimized. This criterion is consistent with
the physical picture of the prefragments evolving into
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independent fragments that move increasingly further
apart. We have shown in previous work [9,12] that the
prefragments in the HFB solutions near scission generally
exhibit ‘‘tails.’’ portions of contributions to the total den-
sity from individual quasiparticles (qp) that extend into the
complementary fragment. Our calculations show that
the size of these tails is closely related to the strength of
the interaction between the fragments. Therefore, minimi-
zation of the interaction energy between fragments is
essentially equivalent to the localization of the qp orbitals
on the fragments.

Hartree-Fock methods in molecular (or nuclear) physics
generally produce single-particle atomic orbitals that
are not spatially localized within a molecule (nucleus).
However, it was observed early on [10] that any unitary
transformation applied to the single-particle components
of a Slater determinant does not affect the global properties
of the corresponding system. Since then, unitary trans-
formations have been routinely used to localize electron
orbitals and thereby define such chemically meaningful
concepts as core and bond orbitals. In nuclear fission, we
will extend the concept to localize nuclear qp states on the
nascent fragments, taking advantage of the fact that the
Bogoliubov vacuum is only defined up to a unitary trans-
formation of the qp destruction operators. More precisely,
for each qp i, we calculate its contribution �ið~rÞ to the total
density. Integration of �ið ~rÞ with respect to ~r defines an
occupation probability v2

i of the qp. We introduce occupa-
tions ðvL

i Þ2 and ðvR
i Þ2 resulting from the integration of �ið~rÞ

to the left and right of the neck position, respectively.
We can then define a localization parameter ‘i � jðvL

i Þ2 �
ðvR

i Þ2j=v2
i for each qp. A value ‘i ¼ 0, for example, cor-

responds to a completely delocalized qp. Our goal then is
to maximize the ‘i (or equivalently, minimize the tails)
by mixing pairs of qp together. Thus, pairs (i; j) of qp
are mixed by an orthogonal transformation with angle
�ij chosen to maximize the quantity v4

i ð�ijÞ‘2i ð�ijÞ þ
v4
j ð�ijÞ‘2j ð�ijÞ. Through a systematic search algorithm, a

set of qp pairs and their mixing angles is therefore found
that minimizes the summed tail size of the two fragments.
In selecting these pairs, we have required that the level
energies of the qp pairs are no more than 2 MeVapart (the
localization procedure is most effective for states that are
close in energy). The interest of this process is that, as the
neck decreases, one can identify prefragments built from
qps that are spatially localized. In particular, the density
matrix �̂ (and pairing tensor �̂) can be decomposed as a
sum of predominantly left (�̂L) and right (�̂R) terms. Of
course, high-energy (continuum) orbitals can never be well
localized, but their occupations are very small and there-
fore they do not contribute significantly to expectation
values of operators. The interaction energy between frag-
ments can now be identified as the contribution to the total
energy from cross terms, �̂L with �̂R (and �̂L with �̂R for
pairing). The nuclear component of that interaction energy

(i.e., excluding the direct Coulomb repulsion between frag-
ments) is plotted in Fig. 1 before and after tail reduction. In
both cases individual qps are assigned to one fragment or
the other based on their spatial localization relative to the
neck position. The effect of the tail reduction can be rather
substantial even when the neck between the fragments is
small, e.g., by �20 MeV even when QN < 0:5.
We show in Fig. 2 more details concerning the localiza-

tion of the qps with occupation v2 according to whether
they are preferentially holes (v2 > 1=2) or particles
(v2 < 1=2). We observe that the effect of the localization
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FIG. 1 (color online). Interaction energies plotted as a function
of neck size (QN). The solid black and red dashed curves are the
nuclear interaction energies before and after localization, re-
spectively, (energy scale on the left y axis), and the dotted green
curve is the exchange part of the 2-body component of the
interaction energy (energy scale on the right y axis). The inset
shows the effect of the localization on the densities of the
fragments at scission.
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FIG. 2 (color online). Individual quasiparticle states before
(top panel) and after (bottom panel) localization at scission.
Proton states are shown as red crosses and neutron states as
black disks. The x axis gives the occupation (v2

i ) of the state,
while the y axis gives its localization (‘i).
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is most visible for the hole states with v2 > 0:7. Note, in
particular, the pair of deeply bound states in the top panel
of Fig. 2 with v2 � 1 and ‘ � 0 (i.e., fully delocalized),
both with K quantum number 1=2 and only 7 keV apart in
energy. These two states become fully localized in the
bottom panel. Notice also that a great number of well-
localized qps of particle-type can combine with well-
localized qps of hole-type to provide a rich spectrum of
two-qp states, themselves well localized on each of the two
prefragments. These simple excitations or combinations of
them describe excited fragments. We were able to con-
struct such 2-qp excitations of up to 20 MeV localized on
the fragments. Not all states are fully localized by the
algorithm above, in particular, a 2-MeV, K ¼ 1=2 neutron
state remains in the bottom panel with v2 � 0:16 and
‘ � 0:53 (which means that� 25% of that qp’s occupation
probability is in its tail), but the overall effect on the
fragment densities shown in the inset in Fig. 1 is signifi-
cant. The effect of the localization on the interaction
energy is even more striking, as shown in Fig. 1. We point
out that this analysis includes � 1100 proton and neutron
qp states.

If we faithfully apply the variational principle to the
fissioning nucleus in order to minimize the total energy
(by the HFB method), the result will be two infinitely
separated fragments in their respective ground states.
Experimental observables—neutron emission and kinetic
energies—clearly indicate that we must depart from this
adiabatic picture. In fact, the point where the evolution of
the fissioning nucleus ceases to be adiabatic could be taken
as a definition of scission. For practical applications, we
give the following 3 criteria that define the scission point:
(1) the repulsive Coulomb force between fragments greatly
exceeds their mutual nuclear attraction, (2) the exchange
contribution to the interaction between fragments is small,
which means that we can neglect the antisymmetry be-
tween their constituents and describe the system as two
separate Bogoliubov vacua beyond the scission point, and
(3) in each fragment, we can excite a set of two-qp states
that remain localized on the fragments, so that the frag-
ments can be considered as separate entities with their own
excitations and in interaction through a repulsive force
acting only on their respective centers of mass. As
the neck is reduced in our 240Pu calculation, the point at
QN ¼ 0:35 is the first for which all three criteria above are
simultaneously verified, and the results in Figs. 2 and 1
(inset) were calculated for this scission point. Scission may
occur at other nearby points, but this one is representative.
At QN ¼ 0:35, the Coulomb force is � 30 times larger
than the nuclear one, the two-body exchange contribution
is only �0:7 MeV (Fig. 1), and a set of 2-qp states can be
constructed from localized states in Fig. 2 that remain
localized within a fragment. The pairing tensor � is non-
local and provides an additional test of the localization of
the fragments. We find that the corresponding pairing

energy is also only �0:7 MeV between fragments at scis-
sion out of �20 MeV for the entire nucleus. Thus, for the
first time in the literature, we give a definition of scission
that does not ignore the nonlocal aspects of quantum
mechanics.
This leads us to describe our system after scission in the

Hill-Wheeler approximation as � ¼ R
fðdÞ�ddd where d

is the relative distance between the fragments, and �d �
�1�2 is the two fragments’ wave function. We obtain the
collective Hamiltonian [13],

Hcoll � ~p2
d

2 �m
þ VðdÞ þ C;

where ~pd is the momentum operator corresponding to d, �
is the reduced mass of the fragments with masses A1 and
A2, m is the nucleon mass, VðdÞ is the fragment interaction
potential, and C ¼ Ei þ "0 is a constant, with Ei (i ¼ 1; 2)
the internal fragment energy, and "0 a zero-point
correction,

Ei �
�
�i

��������
H � ~p2

i

2mAi

��������
�i

�
;

"0 �
�
�d

��������
~p2
1

2mA1

þ ~p2
2

2mA2

� ~p2

2mA

��������
�d

�
:

Note that VðdsÞ þ C is nothing but the total Bogoliubov
energy at the scission point (i.e., at d ¼ ds). The form of "0
is due to the fact that we subtract the center of mass energy,
~p2=2mA, of the mass-A fissioning nucleus throughout the
fission process.
Thus, we propose the following two-stage description of

fission: (1) the nucleus deforms until it reaches a scission
configuration determined with the criteria given above at
which point the fragments are ‘‘frozen’’ in their configu-
rations and (2) as a result of their strong mutual repulsion
move apart essentially by spatial translation. Eventually
these fragments will decay by neutron and gamma emis-
sion to their respective ground states. This is essentially a
picture of fission in the sudden approximation. Note that all
approaches that study the scission point depend on sim-
plifying approximations (e.g., sudden approximation in the
liquid-drop model [4]) or strong hypotheses (e.g., thermal
equilibrium [1]).
This microscopic picture of scission can be readily

integrated into the larger context of the time-dependent
generator-coordinate method. For example, in a two-
dimensional description in terms of the Q20 and Q30 mo-
ments of the nucleus, we identify a set of points in this
Q20-Q30 space that define a boundary between an internal
region (prescission) and an external region (postscission)
using the scission criteria above [9]. The Hill-Wheeler
equation constructed in the internal region then allows us
to follow a wave packet from the first well to this boundary
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[7], and therefore to deduce the probability of populating
different scission configurations.

In the following we investigate the extent to which this
picture is consistent with experimental observables. Let us
first discuss our predictions assuming a one-dimensional
path leading to the hot fission point and that the collective
dynamic is adiabatic from the saddle to the scission
point. Starting with zero energy at the saddle we are
at � 25 MeV above the scission point. With our assump-
tion, this energy must be interpreted as a collective preki-
netic energy. Now, the kinetic energy acquired by the
fragments after scission is simply given by VðdsÞ �
Vð1Þ ¼ VðdsÞ which is � 170 MeV according to our
calculations. Adding the prekinetic energy, our description
gives a total kinetic energy (TKE) of 195 MeV which
exceeds by only 10 MeV the experimental value 184:8�
1:7 MeV obtained by averaging the data sets available in
the literature [14–16].

The calculation of the fragment excitation energies re-
quires their corresponding ground-state energies, which
were obtained by HFB calculations without the constraint
on neck size. Excitation energies of 4.5 and 7 MeV were
obtained for the heavy (average mass number � 132) and
light (average mass number � 108) fragments, respec-
tively. Together, these yield a total excitation energy
(TXE) of � 11:5 MeV. By contrast, the average TXE
expected from empirical arguments [17] in thermal
fission on a 239Pu target is � 26 MeV, thus leaving a
� 15�MeV discrepancy which we address next.

It is believed that three collective degrees of freedom
(Q20; Q30; Q40), if not four (triaxial mode), are the barest
minimum needed to describe the collective dynamics of
fission. If so, one could expect that part of the available
energy in the descent from saddle to scission would be
transferred to two or three modes transverse to the
fission direction. This possibility was studied previously
[11] with 2 degrees of freedom (Q20; Q40). That work
showed that �2 MeV are already taken by one trans-
verse mode. With 2 other degrees of freedom a total of
4 or 5 MeV could be taken up in these collective modes,
at the expense of the fragment kinetic energy. Finally,
another source of dissipation can result from the cou-
pling of the collective dynamic with internal excitations
[18]. A derivation of such a coupling can be obtained in
the framework of a generalization of the generator-
coordinate method including two quasiparticle excita-
tions [19]. These degrees of freedom provide the means
to dissipate part of the available 25 MeV from saddle to
scission, without invoking statistical-mechanics argu-
ments for low-energy fission.

Let us therefore consider different damping scenarios.
Suppose that the 25 MeV potential energy liberated in the
fission of 240Pu is shared in a 50-50 split between presci-
ssion fragment kinetic and excitation energies, then our
prediction (TKE ¼ 182:5 MeV and TXE ¼ 24 MeV)

precisely matches the experimental values. Even if we
take a more conservative 25-75 distribution, one way or
the other, the scenario we propose is still in good agree-
ment with observations. It is rather striking that, without
adjustable parameters, we obtain numbers that are simul-
taneously consistent with the experiment for both the
kinetic and excitation energies in this case. Although the
results in this Letter concern the most likely scission
configuration, preliminary calculations of the kinetic en-
ergy for 240Pu for a wide range of scission configurations
(symmetric to very asymmetric) are already showing a
similar agreement with experiment.
Finally, let us mention that the concept of localization

could have interesting applications as we approach the
scission point. In effect, as we recognize prefragments,
the values of the global constraints split into the con-
tributions from those prefragments. Accordingly, we ex-
pect that the correct description of the system will rely
on separate collective coordinates for those individual
fragments. Although it remains to be verified, we believe
that the localization of Fock space could provide a way
to impose constraints separately on the prefragments,
and thereby give a richer description of the fission
mechanism.
This work was performed under the auspices of the U.S.

Department of Energy by the Lawrence Livermore
National Laboratory under Contract No. DE-AC52-
07NA27344.

[1] K.-H. Schmidt and B. Jurado, Phys. Rev. Lett. 104,
212501 (2010).

[2] S. L. Whetstone, Jr., Phys. Rev. 114, 581 (1959).
[3] J. R. Nix, Nucl. Phys. A130, 241 (1969).
[4] K. T. R. Davies, R. A. Managan, J. R. Nix, and A. J. Sierk,

Phys. Rev. C 16, 1890 (1977).
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