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I compute the thermal suppression of the �ð1sÞ and �b1 states in
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV Pb-Pb collisions.

Using the suppression of each of these states I estimate the total RAA for the �ð1sÞ state as a function of

centrality, rapidity, and transverse momentum. I find less suppression of the �b1 state than would be

traditionally assumed; however, my final results for the total �ð1sÞ suppression are in good agreement

with recent preliminary CMS data.
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The behavior of nuclear matter at extreme temperatures
is now being studied with the highest collision energies
ever achieved using the Relativistic Heavy Ion Collider at
Brookhaven National Laboratory and the Large Hadron
Collider at CERN. For RHIC

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Au-Au

collisions, initial central temperatures of T0 � 350 MeV
were generated. For current LHC

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV colli-

sions one obtains T0 � 500–600 MeV [1] and for upcom-
ing full energy runs with

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5:5 TeV one expects

T0 � 700–800 MeV. At such high temperatures, one
expects to generate a quark-gluon plasma (QGP) in which
the formation of quark bound states is suppressed in favor
of a deconfined plasma of quarks and gluons.

Suppression of quark bound states follows from the fact
that in the QGP one has Debye screening of color charge
[2]. Heavy quarkonium has received the most theoretical
attention, since heavy quark states are dominated by short
distance physics and can be treated using heavy quark
effective theory. Based on such effective theories of
QCD, nonrelativistic quarkonium states can be reliably
described. Their binding energies are much smaller than
the quark massmQ � �QCD (Q ¼ c, b), and their sizes are
much larger than 1=mQ. At zero temperature, since the

velocity of the quarks in the bound state is small (v � c),
quarkonium can be understood in terms of nonrelativistic
potential models such as the Cornell potential which can be
derived directly from QCD using effective field theory [3].

Using such nonrelativistic potential models, studies of
quarkonium spectral functions and meson current correla-
tors have been performed [4]. The results have been com-
pared to first-principles lattice QCD calculations [5] which
rely on the maximum entropy method [6]. In recent years,
however, there has been an important theoretical develop-
ment, namely, the first-principles calculation of the thermal
widths of heavy quarkonium states which emerge from
imaginary-valued contributions to the heavy quark poten-
tial. The first calculation of the leading-order perturbative
imaginary part of the potential due to gluonic Landau
damping was performed by Laine et al. [7]. Since then an
additional imaginary-valued contribution to the potential

coming from singlet to octet transitions has also been
identified [8]. The consequences of such imaginary parts
on heavy quarkonium spectral functions [9], perturbative
thermal widths [7,9], and quarkonium suppression in a
T-matrix approach [10] have recently been studied; how-
ever, these studies were restricted to the case of an isotropic
thermal plasma, which is only the case if one assumes ideal
hydrodynamical evolution.
The calculation of the heavy quark potential has since

been extended to the case of a plasma with finite
momentum-space anisotropy for both the real [11] and
imaginary [12] parts. Additionally, the impact of the imagi-
nary part of the potential on the thermal widths of the states
in both isotropic and anisotropic plasmas was recently
studied [13]. The consideration of momentum-space
anisotropic plasmas is necessary since, for any finite
shear viscosity, the quark-gluon plasma possesses local
momentum-space anisotropies [14,15]. Depending on the
magnitude of the shear viscosity, these momentum-space
anisotropies can persist for a long time and can be quite
large, particularly at early times or near the edges of
the plasma.
This has motivated the development of a new dynam-

ical formalism called ‘‘anisotropic hydrodynamics’’
(AHYDRO) which extends traditional viscous hydro-
dynamical treatments to cases in which the local
momentum-space anisotropy of the plasma can be large
[14,15]. In this Letter I present first results of the combi-
nation of the AHYDRO temporal evolution of Ref. [15]
together with results obtained in Ref. [13] for the real and
imaginary parts of the binding energy. Using this frame-
work I compute the suppression of the �ð1sÞ and �b1

mesons as a function of centrality, rapidity, and transverse
momentum.
Model potential.—The phase-space distribution of

gluons in the local rest frame is assumed to be given by

fðx;pÞ ¼ fisoð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ �ðp � nÞ2p

=phardÞ where phard is a
scale which specifies the typical momentum of the parti-
cles and can be identified with the temperature in an
isotropic plasma (� ¼ 0) [16]. In general, the parameter
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� measures the degree of anisotropy of the plasma via
� ¼ 1

2 hp2
?i=hp2

zi � 1 where pz and p? are the partonic

longitudinal and transverse momenta in the local rest
frame, respectively.

The perturbative heavy quark potential as a function of �
has been evaluated previously and has both real [11] and
imaginary contributions [12]. For Nc ¼ 3 and Nf ¼ 2 the

real part of the resulting potential can be well approxi-
mated by <½Vpert� ¼ �� expð��rÞ=r with

�
�

mD

��4 ¼ 1þ �

�
1þ

ffiffiffi
2

p ð1þ �Þ2ðcosð2�Þ � 1Þ
ð2þ �Þ5=2

�
; (1)

where � ¼ 4�s=3, m
2
D ¼ ð1:4Þ216��sp

2
hard=3 is the iso-

tropic Debye mass, and � is the angle with respect to the
beam line. The factor of ð1:4Þ2 accounts for higher-order
corrections to the isotropic Debye mass [17].

However, for describing finite-temperature states which
can have large radii compared to ��1

QCD, one must supple-

ment the perturbative short range contribution above by a
long range contribution. Following previous work [11], I
generalize the Karsch-Mehr-Satz potential [2] by including
the anisotropic mass scale� given in Eq. (1) in place of the
isotropic Debye mass and adding the entropy contribution
necessary to obtain the internal energy of the states. Such a
construction agrees well with lattice measurements of the
real part of the heavy quark potential [17]. The resulting
model for the real part of the heavy quark potential is

<½V� ¼ ��

r
ð1þ�rÞ expð��rÞ þ 2�

�
½1� expð��rÞ�

� �r expð��rÞ � 0:8�

m2
Qr

; (2)

where the last term is a temperature- and spin-independent
quark mass correction [18] and � ¼ 0:223 GeV is the
string tension. Here I ignore the effect of the running of
�s and fix � ¼ 0:385 to match zero temperature binding
energy data for heavy quark states [11].

For the imaginary part of the model potential I use the
imaginary part of the perturbative heavy quark potential
which has been calculated to linear order in �

=½Vpert� ¼ ��phardf�ðr̂Þ � �½c 1ðr̂; �Þ þ c 2ðr̂; �Þ�g; (3)

where r̂ ¼ mDr and�, c 1, and c 2 are defined in Ref. [12].
The full model potential is given by V ¼ <½V� þ i=½V�

and can be used in the Schrödinger equation. To solve the
resulting Schrödinger equation I use the finite difference
time domain method [19] extended to the case of a
complex-valued potential [13]. For the temperature and
anisotropy dependence of the resulting real and imaginary
parts of the binding energies for the �ð1sÞ and �b1, I refer
the reader to Ref. [13]. For a point of reference, in an
isotropic plasma the medium-induced width of the �ð1sÞ
is approximately =½Ebind� � 0:211T.

Initial conditions and dynamics.—Solution of the
Schrödinger equation gives the real and imaginary
parts of the binding energy of the states. The imaginary
part defines the instantaneous width of the state
=½Ebindðphard; �Þ� � ��Tðphard; �Þ=2. However, one must
account for the complete disassociation of the states when
<½Ebind�< 0. I implement this by assigning a large width
of 10 GeV� ð0:02 fm=cÞ�1 to states when <½Ebind�< 0.
The final results are insensitive to the value of this rate, as
long as it is taken to be greater than 0.5 GeV. Given the
binding energy data, I evolve the system using the non-
boost invariant AHYDRO equations of Ref. [15]. Using the
output I can compute the temporal evolution of the thermal
width which gives �Tð	Þ.
The resulting width �Tð	Þ implicitly depends on the

initial temperature of the system. I vary the assumed
plasma shear viscosity to entropy density ratio 4�
=S ¼
f1; 2; 3g and for zero impact parameter collisions I use
central temperatures of T0 ¼ f520; 504; 494g MeV, respec-
tively. The central temperature for 4�
=S ¼ 1 is fixed
based on the 3þ 1d viscous hydrodynamical simulation
of Schenke et al which reproduces the particle spectra and
elliptic flow seen in

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV Pb-Pb collisions

[1]. The central temperatures at 4�
=S ¼ f1; 2; 3g were
chosen in order to keep dNch=dy ¼ 1400 fixed for different
assumed viscosities. For the rapidity dependence of
the initial temperature, I use the Gaussian rapidity
profile specified in Ref. [15]. Finally, I assume an initial
anisotropy of �0 ¼ 0. Since the current AHYDRO
implementation does not include transverse dynamics,
I model the transverse evolution at zero and finite
impact parameter as a set of decoupled longitudinally
expanding plasmas with initial temperatures given by

Tðx?; bÞ ¼ T0½Npartðx?; bÞ=Npartð0; 0Þ�1=3, where the par-

ticipant density is computed using the Glauber model with
a Woods-Saxon profile and �NN ¼ 62 mb.
At each transverse point I then evolve the system using

AHYDRO starting from 	0 ¼ 0:3 fm=c, terminating the
evolution at a final time, 	f, when the local energy density

becomes less than that of an Nc ¼ 3 and Nf ¼ 2 ideal gas

of quark and gluons with a temperature of T ¼ 192 MeV.
At this temperature plasma screening effects are assumed
to decrease rapidly due to the transition to the hadronic
phase and the widths of the states will become approxi-
mately equal to their vacuum widths.
Formation time.—It is also important to consider the

effect of the time-dilated formation time on the suppression
of the �ð1sÞ and �b1 states [20]. The formation time of a
state can be estimated by the inverse of its vacuum binding
energy. Here I take 	0form ¼ f0:2; 0:4g fm=c for the �ð1sÞ
and �b1, respectively, in their local rest frame. These for-
mation times are consistent with the states’ respective vac-
uum binding energies. In the lab frame the formation time
depends on the transverse momentum of the state via the
gamma factor 	formðpTÞ ¼ �	0form ¼ ET	

0
form=M where M
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is the mass of the relevant state. For averaging over trans-
verse momenta I assume that both states have a 1=E4

T

spectrum which is consistent with the high-pT spectrum
measured by CDF [21].

The suppression factor.—Having obtained the spatial
and temporal evolution of the widths I can compute the
resulting nuclear suppression factor, RAA. Starting from the
extracted time-, transverse-coordinate-, and rapidity-
dependent instantaneous decay rate, I integrate to obtain

��ðx?; pT; &; bÞ � �ð	f � 	formðpTÞÞ
R	f
maxð	formðpT Þ;	0Þ d	�T

ð	;x?; &; bÞ, in proper time [22] where & is the spatial
rapidity. From this I extract RAA via RAAðx?; pT; &; bÞ ¼
expð� ��ðx?; pT; &; bÞÞ. Finally, I average over x? taking
into account the transverse dependence of the hard-particle
production probability via hRAAðpT;&;bÞi�½Rx? dx?TAA

ðx?ÞRAAðx?;pT;&;bÞ�=½
R
x? dx?TAAðx?Þ�.

Feed down.—Since a certain fraction of �ð1sÞ states
produced in high energy collisions come from the decay

of excited states, when computing the total RAA for the
�ð1sÞ one must also consider the suppression of the excited
states which decay or ‘‘feed down’’ to it. In this work I have
only computed the RAA for one excited state (�b1), so I can
only estimate the full feed down effect. I will estimate the
full feed down effect by assuming that all excited states
have the same RAA as the �b1 (shown in Fig. 1). With this
assumption the �ð1sÞ RAA including feed down can be

written as Rfull
AA ¼ xR

ground state
AA þ ð1� xÞRexcited states

AA where

x is the percentage of �ð1sÞ states which are produced
directly. Measurements of bottomonium state feed down inffiffiffi
s

p ¼ 1:8 TeV pp collisions at CDF [23] with a cut
p�
T > 8:0 GeV=c find that the percentage of directly pro-

duced �ð1sÞ states is ½50:9� 8:2ðstatÞ � 9:0ðsystÞ�%. In
all plots shown I use x ¼ 0:51.
Results.—In Fig. 1 I show the Npart dependence of RAA

for �ð1sÞ and �b1. As can be seen from this figure, despite
the fact that the initial temperature is not high enough to
completely dissociate the�ð1sÞ, there is still a suppression
due to the in-medium decay. At these energies we see a
somewhat similar suppression pattern for the �b1. This
may seem paradoxical since the naive melting temperature
for the �b1 is �345 MeV; however, it is important to
consider the finite formation time of the �b1 and the
transverse dependence of the temperature. In practice,
one finds that there are still quite a few �b1’s generated
from the low temperature regions. After averaging over the
pT spectrum and geometry, the final result is the one shown
in the Fig. 1.
In Fig. 2 I show the Npart dependence of Rfull

AA for three

different values of the plasma shear viscosity, 
. The
experimental data points shown are preliminary data
from the CMS collaboration [24]. In all cases, the statisti-
cal error is indicated by the narrow darker (dark red online)
error bar while the systematic error is indicated by the
broader (purple online) shaded region. In Fig. 3 I show
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FIG. 1 (color online). Rapidity- and pT-averaged RAA for
�ð1sÞ and �b1 as a function of Npart using 4�
=S ¼ 1.
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FIG. 2 (color online). Rapidity- and pT-averaged Rfull
AA for the

�ð1sÞ as a function of Npart for 4�
=S 2 f1; 2; 3g.
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FIG. 3 (color online). Centrality- and pT-averaged Rfull
AA for the

�ð1sÞ as a function of rapidity for 4�
=S 2 f1; 2; 3g.
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the rapidity dependence of the �ð1sÞ Rfull
AA . In Fig. 4 I show

the pT dependence of Rfull
AA for 4�
=S ¼ 1. In this figure I

averaged over the pT bins specified by the experiment,
0	pT 	6:5GeV, 6:5GeV	pT 	10GeV, and 10GeV	
pT 	20GeV.

Figures 2–4 taken together demonstrate a reasonably
good agreement between theory and experiment; however,
the pT dependence of the theoretical result seems to be
much flatter than the experimental results. Practically
speaking though, based on the limited number of events,
it is hard to draw firm conclusions. Looking forward it will
be important to include the suppression of the other rele-
vant excited states, e.g., �ð2sÞ and �ð3sÞ, and the effect of
transverse expansion in the dynamics. Both of these goals
represent work in progress.
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