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We show how the sign problem occurring in dynamical simulations of random matrices at a nonzero

chemical potential can be avoided by judiciously combining matrices into subsets. For each subset the

sum of fermionic determinants is real and positive such that importance sampling can be used in

Monte Carlo simulations. The number of matrices per subset is proportional to the matrix dimension.

We measure the chiral condensate and observe that the statistical error is independent of the chemical

potential and grows linearly with the matrix dimension, which contrasts strongly with its exponential

growth in reweighting methods.
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Dynamical simulations of QCD at a nonzero chemical
potential are hampered by the sign problem (see Ref. [1]
for a review). The problem occurs when the probabilistic
weight used in Monte Carlo methods becomes complex,
thus precluding the use of standard importance sampling
techniques. Methods to study QCD at a small chemical
potential, where the sign problem is mild, include re-
weighting methods, Taylor expansions, and analytic con-
tinuation from an imaginary chemical potential [1]. QCD
at zero and nonzero density can also be investigated by
using random matrix theory because of the universality
properties of the Dirac operator to leading order in the
epsilon regime. Based on this equivalence, the severity of
the sign problem has been studied by using the average
phase of the fermion determinant [2–6]. As dynamical
simulations of random matrices at a nonzero chemical
potential also suffer from the sign problem, they can be
used as a playground for its study. In this Letter, we present
a subset method which avoids the sign problem in this case.

In chiral random matrix theory at nonzero chemical
potential �, the Dirac operator for a fermion of mass m
can be represented by [7]

D�;mð�Þ ¼ m i�1 þ��2

i�y
1 þ��y

2 m

� �
; (1)

where the configurations � ¼ ð�1; �2Þ are pairs of com-
plex randommatrices�1 and�2 of dimension ðNþ�Þ�N
with � the number of zero modes of D (for m ¼ 0). The
partition function of the chiral random matrix model with
Nf dynamical quarks with equal mass m is

Z ¼
Z

d�1d�2wð�1Þwð�2Þ detNfD�;mð�Þ; (2)

with Gaussian weights

wð�iÞ ¼ ðN=�ÞNðNþ�Þ expð�N tr�y
i �iÞ (3)

and integration over the real and imaginary parts of all
matrix components. In the presence of a chemical potential
the fermion determinant becomes complex, the sign prob-

lem arises, and the work needed to make reliable measure-
ments on the statistical ensemble grows exponentially with
the volume. In reweighting methods this exponential in-
crease comes from the need to compute exponentially
small reweighting factors from a statistical sampling of
largely canceling contributions [1].
Herein we propose a method to avoid the sign problem

in dynamical simulations of random matrices. The idea is
to rewrite the partition function (2) as an integral over
subsets � ¼ f�i: i ¼ 1; . . . ; Nsg, each containing Ns con-
figurations �i ¼ ð�i

1; �
i
2Þ, such that

Z ¼
Z

d�Wð�Þ��;mð�Þ; (4)

where by construction the Gaussian weights wð�i
1Þwð�i

2Þ
will be invariant for all �i in the subset and can thus be
denoted by Wð�Þ, and we define the fermionic subset
weight

��;mð�Þ ¼ XNs

i¼1

detNfD�;mð�iÞ; (5)

which depends onm and�. The construction of the subsets
will be described below, but its crucial property is that the
sum ��;mð�Þ over all the determinants in a subset is real

and positive, for every � of the ensemble, and can thus be
used as a probabilistic weight in a Monte Carlo method.
The sample average of an observable O over a sample of
NMC subsets �k is computed as

�O�;m ¼ 1

NMC

XNMC

k¼1

XNs

i¼1

detNfD�;mð�kiÞ
��;mð�kÞ O�;mð�kiÞ; (6)

where �ki ¼ ð�ki
1 ; �

ki
2 Þ 2 �k. Methods based on partial

integrations or summations have also been considered by
other authors; see, e.g., Refs. [8–12].
We now sketch how the subsets are constructed. As the

partition function (2) is real and positive (for �< 1) the
basic idea is to create subsets of matrices for which ��;m
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has the same property. For � ¼ 0 the Dirac matrices are
anti-Hermitian and their determinants are real and positive.
When � is increased, the matrices become non-Hermitian,
the determinants are complex, and the sign problem sets in.
For � ¼ 1 and m ¼ 0 the ensemble becomes maximally
non-Hermitian, the average phase factor is zero and the
sign problem maximal. For this limiting case we ideally
want to find a partner configuration c ¼ ðc 1; c 2Þ for any
given � of the ensemble, such that their fermionic deter-
minants explicitly cancel. This is easily achieved if, given
some angle �, we can find a c for which D1;0ðc Þ ¼
ei�D1;0ð�Þ. By using (1), the latter can be written as

ei�D1;0ð�Þ ¼ 0 ic 1 þ c 2

ic y
1 þ c y

2 0

� �
¼ D1;0ðc Þ; (7)

where

c 1ð�;�Þ ¼ cos��1 þ sin��2;

c 2ð�;�Þ ¼ cos��2 � sin��1

(8)

are orthogonal rotations of ð�1; �2Þ, which emerge when
ei�D1;0ð�Þ is explicitly rewritten in an anti-Hermitian and a

Hermitian part. From (3) it follows that wðc 1Þwðc 2Þ ¼
wð�1Þwð�2Þ such that c and � have the same Gaussian
weights in the partition function, for any rotation �. An
exact pairwise cancellation of the fermionic determinants
will happen for any � obeying ei2NNf� ¼ �1. The idea of
canceling determinants can be extended from pairs ð�; c Þ
to subsets fc ð�;�nÞg, where the �n are such that the total
sum of fermionic determinants cancels for � ¼ 1 and
m ¼ 0, i.e.,

P
ne

i2NNf�n ¼ 0.
This idea is now ported to arbitrary chemical potential�

and mass m. In the following we will consider subsets

�ð�Þ ¼
�
c ð�;�nÞ: �n ¼ �n

Ns

^ n ¼ 0; . . . ; Ns � 1

�
; (9)

with c ¼ ðc 1; c 2Þ defined in (8) andNs a positive integer.
To each configuration � ¼ ð�1; �2Þ of the random matrix
ensemble corresponds a subset �ð�Þ, and the set of all
subsets forms an Ns-fold covering of the random matrix
ensemble. The configurations c ð�; �Þ have Gaussian
weights independent of �, but different fermionic weights
detNfD�;mðc ð�; �ÞÞ.

The method presented in this Letter is based on the
following theorem: For any � constructed according to
(9), and for arbitrary �< 1 and m, the fermionic subset
weight ��;mð�Þ defined in (5); i.e., the sum of the fermi-

onic determinants of the Ns configurations c ð�; �nÞ, is
real and positive if Ns > NNf.

More specifically, for m ¼ 0 it can be shown that

��;0ð�Þ ¼ ð1��2ÞNNf�0;0ð�Þ; (10)

for any�. As �0;0 is real and positive, ��;0 is also real and

positive for �< 1. For � ¼ 1 the sum of determinants is
exactly zero. For nonzero mass we can show that ��;m is

real and ��;mð�Þ> ð1��2ÞNNf�0;mð�Þ for �< 1, such

that the weight ��;m is positive. The weights ��;m can thus

be used to generate subsets of random matrices by using a
Metropolis algorithm and compute observables by using
(6). In practice, Ns will be set to its minimum value, i.e.,
Ns ¼ NNf þ 1.

This theorem can be proven analytically and was thor-
oughly tested numerically. The proof will be given in a
forthcoming paper.
We applied the subset method to compute the chiral

condensate of the chiral random matrix ensemble, which
is defined as � ¼ 1

2N trD�1 [13]. We use the Metropolis

algorithm to generate subsets� according to their weights
Wð�Þ��;mð�Þ, where the determinants are computed nu-

merically. Successive subsets in the Markov chain are
generated as follows: Randomly choose a configuration
in the current subset, generate a new configuration by
making a random step, construct the subset corresponding
to this new configuration, and apply an accept-reject step to
the newly proposed subset. In each Markov chain we
generate 100 000 subsets. The chiral condensate is com-
puted for each configuration, and its average is computed
by using (6). As usual, successive configurations in the
Markov chains are correlated and the number of indepen-
dent subsets is smaller by a factor of 2�, where � is the
integrated autocorrelation time. The statistical errors on the
measurements are determined by using the standard error
formula corrected for the autocorrelations.
To compare the subset method with standard reweight-

ing methods, all the simulations were repeated by using
quenched, phase-quenched, and sign-quenched reweight-
ing [6]. In those cases, we used ðNNf þ 1Þ � 100 000

random matrices in the Markov chains, such that the total
number of matrices generated in the reweighting methods
is the same as in the subset method. For the sake of clarity,
we show only the results of phase-quenched reweighting in
the figures below, as its results are representative for the
various reweighting methods.
We performed simulations for N ¼ 2; . . . ; 34, choosing

Nf ¼ 1 and m ¼ 0:1=2N, so that the mass is small with

respect to the magnitude of the smallest eigenvalue. In
Fig. 1, the chiral condensate is shown as a function of the
chemical potential for matrices with N ¼ 2; 4; 8. We com-
pare the results obtained by using the subset method with
those from phase-quenched reweighting. We also show the
exact results computed in Ref. [13]. The data are shown in
the top row and the corresponding relative statistical errors
in the bottom row. As the matrix size increases the re-
weighting method fails for smaller and smaller �2 due to
the sign and the overlap problem. As expected, the error of
the reweighting method grows exponentially, until the
method fails when the set of sampled matrices no longer
overlaps with the relevant configurations for the given
value of �2 and N. This strongly contrasts with the results
of the subset method which are reliable up to much larger
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values of �2 and agree with the analytical predictions.
Interestingly, the accuracy of the measurements is inde-
pendent of the chemical potential.

We also measured the chiral condensate as a function of
N for fixed values of �2. The N dependence of the relative
statistical error on the chiral condensate is shown in Fig. 2
(left, subset method; right, phase-quenched reweighting)
for different values of�2. For a fixed number of subsets the
error in the subset method (left panel) increases approxi-

mately as
ffiffiffiffi
N

p
and is independent of � (the latter also

follows from Fig. 1). If we fix the number of matrices,
rather than the number of subsets, the error will increase

with an additional factor
ffiffiffiffi
N

p
(as the subset size itself grows

with N þ 1), such that the overall relative error will grow
linearly with N. Turning the argument around, to achieve a
constant error, the number of subsets would have to grow
proportionally to N; i.e., the total number of matrices
should approximately grow as N2. The right plot shows
the same quantity for phase-quenched reweighting (on
semilog scale). We observe that the error grows exponen-
tially with N until the method completely fails when the
error stagnates around one and is no longer reliable. Note
that for both methods the additional cost for the numerical
computation of the determinants is proportional to N3.
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FIG. 2 (color online). Relative error " on the chiral condensate versus matrix size N for various values of chemical potential
�2 ¼ 0:1; 0:2; 0:3; 0:4; 0:5. The left plot shows the results of the subset method. The full curve "ðNÞ / ffiffiffiffi

N
p

serves to guide the eye. As a
comparison, the right plot shows the relative error for phase-quenched reweighting on a semilog plot (the color coding for �2 is the
same as in the left plot). The error increases exponentially with N, until the reweighting method fails.
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FIG. 1 (color online). Chiral condensate � (top row) as a function of the chemical potential �2 for the subset method and the phase-
quenched reweighting method for N ¼ 2; 4; 8. The full line shows the exact analytical result of Ref. [13]. The reweighting method fails
for ever smaller �2 when N grows (some data points are negative and are left out of the semilog plots). The corresponding relative
statistical error " is shown in the bottom row. For the subset method, the error is independent of the chemical potential. The error for
the reweighting method grows very rapidly and should be trusted only as long as the method works (see top row).
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For large values of N or �2 we observed that the subset
method breaks down at an N-dependent value �cðNÞ,
because the finite-precision arithmetic limits the accuracy
of ��;m, which can lead to a violation of its positivity. The

breakdown occurs when the sum of the determinants in a
subset becomes of the order of the accuracy of the indi-
vidual determinants. The approximate value �2

c is shown
as a function of N in Fig. 3 for simulations performed in
double precision arithmetic. The data are fitted well by
�2

c � 1� expð�38=N1:2Þ, whose functional form is in-
spired by (10). For large N the fitted curve goes like
1=N1:2. The breakdown can easily be detected during
simulations by monitoring ��;m and the magnitude of the

individual determinants. When the ratio of both quantities
is of the order of the machine precision, the method no
longer gives sensible results. Usually, this is accompanied
by a numerical violation of the positivity of ��;m. For

simulations at m ¼ 0 this breakdown can be avoided alto-
gether by using the analytic formula (10) to compute the
sampling weight ��;0 from �0;0.

Note that the breakdown caused by the finite numerical
accuracy will equally well show up in standard reweighting
methods, even if an exponentially large effort is invested to
keep the statistical error under control. This accuracy
problem is therefore different from the sign problem, as
the latter is of a pure statistical nature and does not depend
on the use of finite-precision or exact arithmetic. The
former is an additional problem of numerical nature which
can be improved upon if necessary by using more sophis-
ticated numerical methods.

What happened to the sign problem in the subset
method? In standard reweighting methods the large can-
cellations, inherent to simulations at a real chemical po-
tential, happen through statistical sampling of the partition
function. In the subset method these cancellations are
removed from the statistical sampling procedure and

become confined inside the subsets, which are constructed
in a deterministic way and whose partial sums ��;m yield

net real and positive weights. Thus, a fundamental differ-
ence between both methods is that the number of configu-
rations in reweighting grows exponentially with the
volume to maintain the necessary statistical accuracy on
the average weight factor [1], whereas only NNf þ 1

matrices per subset are needed in the subset method to
compute the positive subset weights ��;m, independently

of its magnitude. This is how the subset method avoids the
large statistical cancellations characterizing the sign
problem.
From a practical point of view, even though finite-

precision arithmetic in the numerical simulations eventu-
ally leads to a breakdown of the subset method, our nu-
merical tests have shown that the method yields a vast
improvement over the standard reweighting methods for
the dynamical simulation of random matrices. With the
new method higher values of �2 and N can be accessed,
without any loss of accuracy when increasing the chemical
potential and with a measurement error growing propor-
tionally to N when increasing the matrix size.
The crucial question of whether the subset method is

also applicable to physically relevant systems will be in-
vestigated in future research.
I thank Philippe de Forcrand and Tilo Wettig for useful

discussions. This work was supported by the DFG collab-
orative research center SFB/TR–55.

*jacques.bloch@physik.uni-regensburg.de
[1] P. de Forcrand, Proc. Sci., LAT2009 (2009) 010.
[2] K. Splittorff and J. J.M. Verbaarschot, Phys. Rev. Lett. 98,

031601 (2007).
[3] K. Splittorff and J. J.M. Verbaarschot, Phys. Rev. D 75,

116003 (2007).
[4] J. Bloch and T. Wettig, J. High Energy Phys. 03 (2009)

100.
[5] M. P. Lombardo, K. Splittorff, and J. J. M. Verbaarschot,

Phys. Rev. D 80, 054509 (2009).
[6] J. Bloch and T. Wettig, J. High Energy Phys. 05 (2011)

048.
[7] J. C. Osborn, Phys. Rev. Lett. 93, 222001 (2004).
[8] A. Gocksch, Phys. Rev. Lett. 61, 2054 (1988).
[9] T.D. Kieu and C. J. Grin, Phys. Rev. E 49, 3855 (1994).
[10] K. N. Anagnostopoulos and J. Nishimura, Phys. Rev. D 66,

106008 (2002).
[11] J. Ambjørn, K.N. Anagnostopoulos, J. Nishimura, and

J. J.M. Verbaarschot, J. High Energy Phys. 10 (2002) 062.
[12] Z. Fodor, S. D. Katz, and C. Schmidt, J. High Energy Phys.

03 (2007) 121.
[13] J. C. Osborn, K. Splittorff, and J. J. M. Verbaarschot, Phys.

Rev. D 78, 065029 (2008).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35

µc
2

N

FIG. 3 (color online). Chemical potential �2
cðNÞ where the

subset method breaks down due to the finite precision in
the computation of ��;m. The full line shows the fit �2

c ¼
1� expð�38=N1:2Þ.

PRL 107, 132002 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

23 SEPTEMBER 2011

132002-4

http://dx.doi.org/10.1103/PhysRevLett.98.031601
http://dx.doi.org/10.1103/PhysRevLett.98.031601
http://dx.doi.org/10.1103/PhysRevD.75.116003
http://dx.doi.org/10.1103/PhysRevD.75.116003
http://dx.doi.org/10.1088/1126-6708/2009/03/100
http://dx.doi.org/10.1088/1126-6708/2009/03/100
http://dx.doi.org/10.1103/PhysRevD.80.054509
http://dx.doi.org/10.1007/JHEP05(2011)048
http://dx.doi.org/10.1007/JHEP05(2011)048
http://dx.doi.org/10.1103/PhysRevLett.93.222001
http://dx.doi.org/10.1103/PhysRevLett.61.2054
http://dx.doi.org/10.1103/PhysRevE.49.3855
http://dx.doi.org/10.1103/PhysRevD.66.106008
http://dx.doi.org/10.1103/PhysRevD.66.106008
http://dx.doi.org/10.1088/1126-6708/2002/10/062
http://dx.doi.org/10.1088/1126-6708/2007/03/121
http://dx.doi.org/10.1088/1126-6708/2007/03/121
http://dx.doi.org/10.1103/PhysRevD.78.065029
http://dx.doi.org/10.1103/PhysRevD.78.065029

