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We show that a detector acquires a Berry phase due to its motion in spacetime. The phase is different in

the inertial and accelerated case as a direct consequence of the Unruh effect. We exploit this fact to design

a novel method to measure the Unruh effect. Surprisingly, the effect is detectable for accelerations 109

times smaller than previous proposals sustained only for times of nanoseconds.

DOI: 10.1103/PhysRevLett.107.131301 PACS numbers: 04.70.Dy, 03.65.Ta, 04.62.+v, 42.50.Dv

In the Unruh effect [1,2], the vacuum state of a quantum
field corresponds to a thermal state when described by
uniformly accelerated observers. Its direct detection is
unfeasible with current technology, since the Unruh tem-
perature is smaller than 1 K even for accelerations as high
as 1021 m=s2. Sustained accelerations higher than
1026 m=s2 are required to detect the effect [2,3]. In this
Letter, we show that the state of a moving detector coupled
to the field acquires a Berry phase [4] due to its movement
in spacetime. This geometric phase, which is a function of
the detector’s trajectory, encodes information about the
Unruh temperature and it is observable for accelerations
as low as 1017 m=s2. Such acceleration must be sustained
only for a few nanoseconds. Our results enormously sim-
plify the challenge of measuring the Unruh effect with
present technology, since producing extremely high accel-
erations and measuring low temperatures were the main
obstacles involved in its detection. The results presented
here are independent of specific experimental implemen-
tations; however, we propose a possible scheme for the
detection of this phase.

Finding indisputable corroboration of the Unruh effect is

one of the main experimental goals of our time [2,5]. The

effect is one of the best known predictions of quantum field

theory incorporating general relativity. However, its very

existence has been subject to lengthy controversy [6]. Its

observation would provide not only an end to such dis-

cussion but also experimental support for Hawking radia-

tion and black hole evaporation, given the deep connection

between these phenomena [7]. Detection of the Unruh

effect would have an immediate impact in many fields

such as astrophysics [8], cosmology [9], black hole physics

[10], particle physics [11], quantum gravity [12], and

relativistic quantum information [13].
Efforts toward finding evidence of the Unruh and

Hawking effects also include proposals in analog systems
such as fluids [14], Bose-Einstein condensates [15], optical
fibers [16], slow light [17], superconducting circuits [18],
and trapped ions [19]. Even in such systems, analog effects

produce temperatures of the order of nanokelvin that re-
main difficult to detect.
Interestingly, it has gone unnoticed that Berry’s phase

can be employed to detect the Unruh effect. Berry showed
that an eigenstate of a quantum system acquires a phase, in
addition to the usual dynamical phase, when the parame-
ters of its Hamiltonian are varied in a cyclic and adiabatic
fashion [4]. In the case of a pointlike detector interacting
with a quantum field, the movement of the detector in
spacetime produces, under certain conditions, the cyclic
and adiabatic evolution that gives rise to Berry’s phase. We
will show that the Berry phase for an inertial detector
differs from that of an accelerated one. This difference
arises due to the Unruh effect: one detector interacts with
the vacuum state, the other with a thermal state. The Berry
phase of an accelerated detector depends on the Unruh
temperature. Surprisingly, we find that this phase is ob-
servable for detectors moving with relatively low acceler-
ations, making the detection of the Unruh effect accessible
with current technology.
In our analysis, we consider a massless scalar field in the

vacuum state from the perspective of inertial observers
moving in a flat ð1þ 1Þ-dimensional spacetime. The
same state of the field from the perspective of uniformly
accelerated observers corresponds to a thermal state whose
temperature is the so-called Unruh temperature TU ¼
@a=ð2�ckBÞ, where a is the observer’s acceleration, c the
speed of light, and kB Boltzmann’s constant.
In order to show evidence of this effect, we consider a

pointlike detector endowed with an internal structure that
couples linearly to the scalar field �½xðtÞ� at a point xðtÞ
corresponding to the world line of the detector (see Fig. 1).
When the detector is considered to be a harmonic oscillator
with ladder operators by and b, the interaction Hamiltonian

is given by HI / ðby þ bÞ�̂½xðtÞ�, where ðby þ bÞ is the
detector’s position operator. This model is a type of Unruh-
DeWitt detector [2] which has been previously studied in
[20]. In a realistic scenario, the oscillator couples to a
peaked distribution of field modes. However, if the distri-
bution can be contrived to approach a delta function, we
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can assume that only one mode of the field is coupled to the
detector. In this case, the field operator takes the form

�̂½xðtÞ� � �̂k½xðtÞ� / ½aeiðkx��atÞ þ aye�iðkx��atÞ�, where
ay and a are creation and annihilation operators associated
to the field mode k with frequency jkj ¼ �a. The
Hamiltonian is therefore

HT ¼ �aa
yaþ�bb

ybþ �ðbþ byÞ
� ½ayeiðkx��atÞ þ ae�iðkx��atÞ�; (1)

where �a and �b are the field and atom frequencies,
respectively, and � is the coupling frequency.

The single-mode interaction can be engineered, for in-
stance, by employing a cavity. Considering that the cavity
field modes have very different frequencies and one of
them is close to the detector’s natural frequency, the de-
tector effectively interacts only with this single mode. It is
well-known that introducing a cavity is problematic, since
the boundary conditions may inhibit the Unruh effect.
However, this problem is solved by allowing the cavity
to be transparent to the field mode to which the detector
couples. Therefore, this single mode is a global mode. In a
realistic situation, the cavity would be transparent to a
frequency window which is experimentally controllable.
It is then an experimental task to reduce the window’s
width as required.

Although calculations involving Unruh-DeWitt detec-
tors usually employ interaction or Heisenberg pictures
(as transition probabilities are more conveniently calcu-
lated), in (1) we employ a mixed picture where the detec-
tor’s operators are time-independent. This situation is
mathematically more convenient for Berry phase calcula-
tions; the results are, as expected, picture-independent.

The Hamiltonian (1) can be diagonalized analyti-
cally; its eigenstates are UyjNaNbi, where jNaNbi are

eigenstates of H0ð!a;!bÞ ¼ !aa
yaþ!bb

yb and U ¼
SaSbDabŜbRa. The operators

Dab ¼ exp½sðayb� abyÞ�; Sa ¼ exp½12uðay2 � a2Þ�;
Sb ¼ exp½12vðb2 � by2Þ�; Ŝb ¼ exp½pðby2 � b2Þ�;
and Ra ¼ expð�i’ayaÞ are the two-mode displacement,
single-mode squeezing, and phase rotation operators [21],
respectively.
The parameters u, v, s, p, !a, and!b are functions of �

and the detector frequencies �a and �b. Their functional
form is obtained when diagonalizing HT . Only three pa-
rameters turn out to be independent, and we can write u, s,
and p in terms of v, !a, and !b. Details will appear in a
forthcoming paper [22].
The phase of the field operators ’ ¼ kx��at, where

we have used Minkowski coordinates ðt; xÞ (a convenient
choice for inertial observers), varies due to the time evo-
lution along the detector’s trajectory. Therefore, the dis-
placement of the detector in spacetime generates a cyclic
change in the Hamiltonian. The parameter ’ completes a
2� cycle in a period of time �t���1

a .
Consider a scenario such that, before the interaction

between the field and the detector is switched on, the field
is in the vacuum state and the detector in the ground state
j0f0di. Employing the sudden approximation, we find that,

after the coupling is suddenly switched on, the state of the
system is

jc 00i ¼
X
n;m

hnfmdjUj00iUyjnfmdi: (2)

In the coupling regimes we consider, the probability of
detector excitation due to the sudden switching on is
negligible. For small � and for any value of �a and �b,
the state j0f0di is an approximate eigenstate of the operator

SaSbDabŜbRa with eigenvalue 1. Therefore, under these
conditions, the state of the system immediately after the
interaction has been switched on is Uyj0f0di.
Now, we investigate under what conditions the time

evolution of the coupled field-detector system is adiabatic.
During the evolution, the ground state Uyj0f0di does not
become degenerate and the energy gap between the ground
and first excited state is time-independent. For small but
realistic values of �, energy conservation ensures a negli-
gible probability for the system to evolve into an excited
state (an explicit calculation of the probability of excitation
is given in [23]). In this case, the evolution due to the
movement of the detector in spacetime is adiabatic, since
the ground state of the Hamiltonian Hðt0Þ evolves after a
time t� t0 to the ground state of the Hamiltonian HðtÞ.
After finding under which conditions the evolution is

cyclic and adiabatic, we are able to compute the Berry
phase � acquired by the state Uyj0f0di after a cycle in ’.

For an eigenstate jc ðtÞi of HT , i� ¼ H
R A � dR, where

Ai ¼ hc ðtÞj@Ri
jc ðtÞi and R is a closed trajectory in the

parameter space fR1ðtÞ; . . . ; RkðtÞg on which HT depends
[4]. For our particular case of the inertial detector in our
scenario, we obtain

Accelerated
   detector

Inertial detector

FIG. 1. Trajectories for an inertial and accelerated detector.

PRL 107, 131301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

23 SEPTEMBER 2011

131301-2



�I

2�
¼!asin

2vsinh½2ðC�vÞ�þ!b sinhð2vÞsinh2ðC�vÞ
!a sinh½2ðC�vÞ�þ!b sinhð2vÞ ;

where C ¼ 1
2 lnð!a=!bÞ with !a=!b > e2v. Here, the

label I denotes that the phase corresponds to the inertial
detector. Note that the phase is identical for all inertial
trajectories. In what follows, we show that, as a direct
consequence of the Unruh effect, the phase is different
for accelerated detectors.

Computing the Berry phase in the accelerated case is
slightly more involved. A convenient choice of coordinates
for the accelerated detector is Rindler coordinates ð�; �Þ. In
this case, ’ ¼ j�aj���a�. The evolution is cyclic after
a time �� ¼ ��1

a . Adiabaticity can also be ensured in this
case, since the probability of excitation is negligible for the
accelerations we will later consider [2,24].

We assume that identical detectors couple to the field in
both inertial and accelerated cases. Hence, they couple to
the same proper frequency (the frequency in the reference
frame of the detector). Note that these frequencies are not
the same from the perspective of any inertial observer.
Although HT in (1) has the same form in both scenarios,
in the inertial case a and ay are Minkowski operators,
whereas for the accelerated detector, they correspond to
Rindler operators. To make this distinction clear, from now

on, we denote Uy
M and Uy

R with the understanding that the
operators involved are Minkowski and Rindler, respec-
tively. For accelerated observers, the state of the field is
not pure but mixed, a key distinction from the inertial case.
Expressing the state of the field and detector in the basis of
an accelerated observer, the state j0fih0fj transforms to the

thermal Unruh state �f [1,13]. Therefore, before turning on

the interaction between the field and the detector, the
system is in the mixed state �f � j0dih0dj. When the inter-

action is suddenly switched on, a general state jNf0di
evolves, in our coupling regime, very close to a superpo-

sition of eigenstates Uy
Rjifjdi, where Nf ¼ if þ jd. If im-

mediately after switching on the interaction we verify that
the detector is still in its ground state (by making a pro-
jective measurement), we can assure that the state of the

joint system is �T ¼ Uy
Rð�f � j0dih0djÞUR.

Calculating the mixed state Berry phase [25], we find

�a ¼ �I � Argðcosh2q� e2�iGsinh2qÞ;

where �I is the inertial Berry phase, q ¼ arctanðe���ac=aÞ,
and

G ¼ !b sinhð2vÞ cosh½2ðC� vÞ�
!a sinh½2ðC� vÞ� þ!b sinhð2vÞ

depends on the detector parameters.
We now compare the Berry phase acquired by the

detector in the inertial and accelerated cases. After a
complete cycle in the parameter space (with a proper

time ��1
a ), the phase difference between an inertial and

an accelerated detector is � ¼ �I � �a.
In Fig. 2, we plot the phase difference � as a function of

the acceleration corresponding to choosing physically rele-
vant frequencies of atom transitions [24,26] coupled to the
electromagnetic field (in resonance with the field mode
they are coupled to) for the microwave regime (2.0 GHz)
and for three different coupling strengths: (1) � ’ 34 Hz,
(2) � ’ 0:10 kHz, (3) � ’ 0:25 kHz.
The third case, where the coupling frequency

� ’ 10�7 �a, corresponds to typical values for atoms in
free space with dipolar coupling to the field [26]. For a
single cycle (after 3.1 ns), the phase difference is large
enough to be detected. The visibility of the interference

pattern is given by V¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½j0f0dih0f0djð�f�j0dih0djÞ�

q
¼

cosh�1q’1. Note that the visibility is approximately unity
in all the situations we consider due to the relatively low
accelerations involved.
Since the Berry phase accumulates, we can enhance the

phase difference by evolving the system through more
cycles. By allowing the system to evolve for the right
amount of time, it is possible to produce a maximal
phase difference of � ¼ � (destructive interference).
For example, considering an acceleration of a �
4:5� 1017 m=s2, a maximal phase difference would
be produced after 30 000 cycles. Therefore, given the
frequencies considered in our examples, one must allow
the system to evolve for 95 	s.
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FIG. 2. � for each cycle as a function of the acceleration for
three different scenarios. First scenario (top): �a ’ 2:0 GHz,
�b ’ 2:0 GHz, and � ’ 34 Hz. Second scenario (middle):
�a ’ 2:0 GHz, �b ’ 2:0 GHz, and � ’ 0:10 KHz. Third
scenario (bottom): �a ’ 2:0 GHz, �b ’ 2:0 GHz, and � ’
0:25 KHz.
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Note that, for an acceleration of a � 1017 m=s2, the
atom reaches speeds of � 0:15c after a time t � ��1

a .
The longer we allow the system to evolve in order to obtain
a larger phase difference, the more relativistic the atom
becomes. Therefore, depending on the particular experi-
mental implementation considered to measure the effect, a
compromise between the desired phase difference and
feasibility of handling relativistic atoms must be consid-
ered. This experimental difficulty can be overcome by
means of different techniques. For example, since the
phase accumulates independently of the sign of the accel-
eration, one could consider alternating periods of positive
and negative acceleration in order to reduce the final speed
reached by the atom. This will also help to cancel the
dynamical phase difference between the paths in a specific
setting, as discussed later. The Berry phase is always a
global phase. In order to detect it, it is necessary to prepare
an interferometric experiment. For example, a detector in a
superposition of an inertial and accelerated trajectory
would allow for detection of the phase. Any experimental
setup in which such a superposition can be implemented
would serve our purposes. A possible scenario can be
found in the context of atomic interferometry. This tech-
nology has already been successfully employed to measure
with great precision general relativistic effects such as time
dilation due to Earth’s gravitational field [27].

Consider the detector to be an atom which is introduced
into an atomic interferometer after being prepared in its
ground state. In one arm of the interferometer, we let the
atom move inertially. In the other arm, we consider a
mechanism which produces a uniform acceleration of the
atom. Such a mechanism could consist of laser pulses that
are prolonged for fractions of nanoseconds. Laser technol-
ogy producing such high accelerations is already available
[28]. In order for the detector to survive at least long enough
to conclude the interference experiment, the laser pulses
must be engineered to create the deep potential wells
necessary to accelerate the atom without exciting it. As
long as the atom does not collide with other atoms, this
seems feasible [29]. An alternative to this is to consider ions
or atomic nuclei as detectors which can be accelerated by
applying a potential difference in one arm of the interfer-
ometer. While such setups are obviously not exempt from
technical difficulties, the experimental challenges involved
are expected to be solvable with near-future technology.

Paths (of slightly different length) can be chosen such
that the dynamical relative phase cancels. It is sufficient
that the dynamical phase difference through both trajecto-
ries be equal or smaller than the geometric phase to allow
for its detection. Although such cancellation depends upon
the specific experimental setup, we find that, even for a
simple setting with current length metrology technology
[30], we can control the relative dynamical phase with a
precision�� � 10�8, several orders of magnitude smaller
than the Berry phase acquired in one cycle.

Here, we have shown that the Unruh effect leaves its
footprint in the geometric phase acquired by the joint state
of the field and the detector for time scales of about
5� 10�10 s. The effect is observable for accelerations as
low as 1017 m=s2 and can be maximally enhanced, allow-
ing the system to evolve a few microseconds.
Our theoretical setting is general and independent of any

particular implementation, paving the way for future ex-
perimental proposals. For instance, by considering detector
frequencies in the MHz regime, the method would allow
detection of the Unruh effect for accelerations as low as
1014 m=s2. For this, other multilevel harmonic systems
could be employed as detectors, such as fine structure
transitions where frequencies are closer to the MHz re-
gime. Possible experimental implementations of this
method are expected to be suggested elsewhere [22].
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