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We study spherically symmetric solutions in a covariant massive gravity model, which is a candidate for
a ghost-free nonlinear completion of the Fierz-Pauli theory. There is a branch of solutions that exhibits the
Vainshtein mechanism, recovering general relativity below a Vainshtein radius given by (rgmz)'/ 3, where
m is the graviton mass and r, is the Schwarzschild radius of a matter source. Another branch of exact
solutions exists, corresponding to de Sitter—Schwarzschild spacetimes where the curvature scale of
de Sitter space is proportional to the mass squared of the graviton.
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Introduction.—It is a fundamental question whether
there exists a consistent covariant theory for massive grav-
ity, where the graviton acquires a mass and leads to a large
distance modification of general relativity (GR). The quest
for massive gravity dates back to the work by Fierz and
Pauli (FP) in 1939 [1]. They considered a mass term for
linear gravitational perturbations, which explicitly breaks
the gauge invariance of GR. As a result, there exist 5 de-
grees of freedom in the graviton, instead of the two found
in GR. There have been intensive studies on what happens
going beyond the linearized theory. In 1972, Boulware and
Deser (BD) found that, at the nonlinear level, there appears
a sixth mode in the graviton that becomes a ghost in the FP
model [2]. This problem was reexamined using the effec-
tive theory approach [3], where additional (Stiickelberg)
fields were introduced to restore the gauge invariance, and
whose scalar part represents the helicity-0 mode of the
graviton. In the FP model, the scalar acquires nonlinear
interaction terms that contain more than two time deriva-
tives, signaling the existence of the ghost.

The Stiickelberg approach also sheds light on the other
puzzle in the FP gravity: if one linearizes the system, the
solutions in the FP theory do not reduce to GR solutions in
the massless limit. This is known as the van Dam, Veltman,
Zakharov (vDVZ) discontinuity [4,5]. However, in this
massless limit the scalar mode becomes strongly coupled
and one cannot linearize the system. Therefore, due to
strong coupling, the scalar interaction is shielded and GR
can be recovered. This is known as the Vainshtein mecha-
nism [6]. The strong coupling scale in the FP model is
identified as As = (m*Mp)'/>, where Mp, is the Planck
scale and m is the graviton mass. This scale is tightly
connected with the nonlinear interactions of the scalar
mode that contain more than two time derivatives. In the
decoupling limit, where m — 0 and Mp; — o0, while the
strong coupling scale As is kept fixed, one obtains an
effective theory for the scalar mode, where it is possible
to study the consistency of the theory in more detail.

Until recently, it was believed that there is no consistent
way to extend the FP model [7,8] to get a ghost-free model
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at all orders. A breakthrough came with a 5D braneworld
model known as the Dvali-Gabadadze-Porrati (DGP)
model [9]. In this model there appears a continuous tower
of massive gravitons from a four-dimensional perspective.
The nonlinear interactions of the helicity-0 mode of
massive gravitons contain no more than two derivatives,
which is crucial to avoid the BD ghost. Because of this
fact, the strong coupling scale in this theory is given by
A; = (m2Mp)'/? instead of As, where m = r.' and r, is a
crossover scale between 5D and 4D gravity [10,11].
Further studies have considered more general nonlinear
interactions which contain no more than two derivatives.
In 4D, only a finite number of terms satisfy this condition;
these are dubbed Galileon terms because of a symmetry
under field transformations of the form 9,7 — 9,7 + ¢,
[12]. Reference [13] constructed the extension of the FP
theory that gives the Galileon terms in the decoupling limit,
by choosing the correct parameters in the Lagrangian
up to quintic order in perturbations. Reference [14]
proposed a covariant nonlinear action that automatically
ensures this property to all orders, which we will discuss
below.

A remaining crucial question is whether this property,
holding in the decoupling limit, is sufficient to ensure the
absence of the BD ghost or not. In Ref. [14], it was shown
that there is no BD ghost in the decoupling limit to all
orders in perturbation theory, but only up to and including
quartic order away from this limit. However, it is very hard
to show the absence of the BD ghost at all orders if one
starts from Minkowski and studies nonlinear interactions
perturbatively. Therefore, it is important to obtain non-
perturbative background solutions in this theory and study
fluctuations around them. Moreover, it is interesting to find
solutions in this covariant nonlinear theory that can de-
scribe features of the observed Universe. These are the
topics of the present work.

Covariant nonlinear massive gravity.—We first con-
struct the action for the generalized FP model based on
Refs. [13,14]. We define the tensor H,, as a covariantiza-
tion of the metric perturbations:
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g,u.v = TI,U,V + h/.LV = H/.LV + naﬁaud)aav(ﬁﬁ' (1)

The Stiickelberg fields ¢* = (x* — #%) transform as
scalars, while 1,4 corresponds to a nondynamical back-
ground metric that is needed to define the potential, which
is assumed to be the Minkowski metric. The covariant
tensor H ,, can then be expanded as

H,,=hy, + 1p,0,7P + 1,,0,7 — 1,50,79,7P,
= h/.LV - Q,u.w (2)

and under the coordinate transformation x* — x* + &,
7r# transforms as

mht — Tt + ER 3)

Before proceeding with the massive gravity theory, indices
are raised and lowered, from now on, with the dynamical
metric g,,,; for example, HYy = g*’H,,.

We define a new tensor .’K;’L as

L= op - (Ve e 1) 4)

7

where the square root is formally understood as
\/Z;"L VAL = Aj,. This allows us to represent the complete
potential for gravitational interactions as

MZ
L= TPI\/—g(R - m*U),

(5)
U = [tr(K?) — (rK)?].

By expanding the potential in H,,,,, we get an infinite sum
of interaction terms for H ,,,, with the FP term at the lowest
order.

In order to study exact solutions associated with the
previous Lagrangian, it is convenient to express K in
terms of matrices, namely,

K=ﬂ—¢gﬂn+Ql (6)

where [ denotes the identity matrix, and we have used
H,, = guv — My, + Q). The potential in four dimen-
sions then reads

U=trg" ' [n+9]—12+ tr\/g"[n + 9]
x (6 —tryfg [ + Q]). (7)

In general, the task is to calculate the trace of

Vg [y + Q]. Given that g~ ![n + Q]is a square matrix,
the Schur decomposition theorem ensures that it can be
expressed as

uve

g [n+Q]1=TDT, (8)

for some unitary matrix 7 and an upper triangular matrix
D. The diagonal entries of D are the eigenvalues of
g '[n+ QJ, and we call these eigenvalues Ay, ..., A4.

Then, since v/g [ + Q] = T DT !, one can express
the traces in the formulas above, in terms of eigenvalues,
as

g ' ln+ Q=3 A g In+Q]=3VA. 9

Plugging these expressions into the potential, Eq. (7), we
find the following expression for U:

U = ;Ai + <Z\/_A‘,)(6 - ZJ)T) —12. (10)

Spherically symmetric configurations.—We now focus
on analyzing properties of spherically symmetric con-
figurations in this setup. We start by considering static
configurations in the unitary gauge, 7" =0 (see
Ref. [15] for spherical symmetric solutions in the FP
theory). The most general form of the metric respecting
spherical symmetry is

ds?=—C(r)dt* + A(r)dr?* + 2D(r)dtdr + B(r)dQ?, (11)

where dQ? = d#? + sin’6d¢>. We choose to write the
nondynamical flat metric as ds> = —dt*> + dr* + r>dQ>.
Notice that in GR one can set B(r) = r*> by a coordinate
transformation, but this is not possible here, since we have
already fixed the gauge completely. In order to simplify
the analysis, it is convenient to define the combination
A(r) = A(r)C(r) + D*(r). We plug the previous metric
into the Einstein equations

T’U

Guv = Ty,

12)

where the energy momentum tensor from the potential U

of Eq. (10) is defined as T, = = 55“ The Einstein

tensor G, satisfies the identity D(r)G, + C(r)G,, =0,
which implies the algebraic constraint

0=DNTY + c(r)TY

- D(r)[2r — 34/B(r) [WA(r) ‘
VBO[A(r) + C(r) + 24/A(r) ]2

The previous condition can be satisfied in two ways,
which lead to two different branches of solutions. We can
either set D(r) = 0, and focus on diagonal metrics, or
alternatively, set B(r) = 4r?/9. The fact that there are
two branches of solutions indicates that, unlike in GR
where Birkhoff’s theorem holds, there is no uniqueness
theorem for spherically symmetric solutions in this theory.
We analyze the two branches in turn.

Diagonal-metric branch: Asymptotically flat solutions.—
The case of diagonal metrics, D(r) = 0in Eq. (11), leads to
equations which in general cannot be solved analytically.
Thus, we will analyze them perturbatively, showing that
they lead to asymptotically flat solutions (see Ref. [16]

(13)
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for a more detailed discussion on this branch of solutions). 2on! — 2GM 2,
We expand the functions A, C, and B as pn = (mp)°h,
~ GM
1 — T 200 — 1,2
A(r) = Y cir) =1+ np f=-2 ) (mp)*(h — h), (17)
14 GM 3
B(r) — r? (14) — = —(mp)Q(ih —3h% + h3).
(T ’

and truncate the field equations to first order in n, f, and A.
It is more convenient to introduce a new radial coordinate

p = 4/B(r), so that the linearized metric is expressed as
ds®> = —(1 + 2n)d> + (1 — f)dp® + p2dQ?,  (15)

where f = f — 2h — 2ph’, and a prime denotes a deriva-
tive with respect to p. In this new coordinate, the solutions
for n and f are then given by

_8GM .

4AGM
e mp, f: —_
3p

——(1+mp)e ™, (16)
3p

2n=
where we fix the integration constant so that M is the mass
of a point particle at the origin and 87G = Mp,>. See the
right-hand plot of Fig. 1 for the general behavior of these
solutions. Notice that these configurations, as anticipated,
are asymptotically flat and exhibit the vDVZ discontinuity;
i.e., they do not agree with the GR solutions (2nggr =
for = —2GM/p) in the limit m — 0. However, in order
to understand what really happens in this limit, one should
take into account the nonlinear behavior of h. Let us
consider scales below the Compton wavelength mp < 1,
and at the same time ignore higher order terms in GM.
Under these approximations, the equations of motion can
still be truncated to linear order in f and n, but since 4 is
not necessarily small, we keep all nonlinear terms in A.
Then we obtain the following equations:

3.0 7
25 2 anl r2nr 2 |
2.0 1
15 er/ err
1.0 =
LY
0.5 BN ] [
0.0
1 2 2 R 1
10 10 1 10 10 10 10 1 10 10
plpy mp

FIG. 1. Numerical solution for 9,f = f/, 9,n = n’, and the
quotient 7/ = f'/2n’ around the Vainshtein radius p,, (left) and
the Compton wavelength p ~ 1/m (right). Region 1 (2) shows
how GR solutions are (not) recovered inside (outside) the
Vainshtein radius py. Region 3 shows the asymptotic decay of
the linear solutions [Eq. (16)]. Here, GM = 1.

We should stress that these are exact equations in the limit
mp < 1, GM/p < 1; i.e., there are no higher order cor-
rections in h. For large radial p values, one can linearize
the equations in h, recovering the solution in Eq. (16), to
first order in mp. On the other hand, the Vainshtein mecha-
nism applies, and below the so-called Vainshtein radius,
pv = (GMm~2)'3 h becomes larger than 1 and the non-
linear terms in 2 become important, recovering GR close to
a matter source. Actually, for p << py, the solution for % is
simply given by |h| = py/p > 1. The latter solution for
and Eq. (17) imply

2nt =297, 12
p 2\py

)

Therefore, corrections to the GR solutions are indeed small
for p < py, as shown in the left-hand plot of Fig. 1.

The Vainshtein mechanism becomes also transparent in
a nonunitary gauge. Indeed, by performing the coordinate
transformation p = +/B(r), we excite the p component of
the Stiickelberg field [see Eq. (3)], #” = —ph. Thus the
strong coupling nature of % is encoded in 7” in this
coordinate. It is possible to construct an effective theory
for this Stiickelberg field in the so-called decoupling limit
[13]: first we introduce a scalar so that 7, = 6M7T/A3,
where A% = m’Mp,. Then the covariantization of metric
perturbations H ,, is written as

(18)

II ;Hz

2
Hyy = hy, + MV_M%1m4 wv

1224 124 2
Mplm

19)

where II,, =9,0,7 and IIZ, =1I,,,I1%. Formally,
the decoupling limit is achieved by taking m — 0 and
Mp; — oo, but keeping Aj fixed. By substituting Eq. (19)
into the action, one can show that the kinetic terms of 7
become total derivatives and a mixing appears between
h,, and 7, which can be diagonalized using the definition

o

hyy, = hy, + A M 9,70, . (20)
Pl

A3Mp,

The Lagrangian is then written as
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N 3 3
L= ‘£GR(h/,LV) + §7T|:|7T - 2—[\3(877')2|:|7T

L1
24§
— 3[I[IT?] + 2[11°]), 21)

where [IT]=11}, [[I?]=11#"11,,, [I1*] = 11#"11,,,11¢,
and Lgp is the linearized Einstein-Hilbert action for / v
The terms containing the scalar field 7 are known as
Galileon terms, which give rise to the second order differ-
ential equations, as explained in the Introduction. For the
spherically symmetric case, the equation of motion for 7
simplifies to [12,17]

/ / /
€ 4l ) b
pl  A\p A§\p 47Mp p*
where the integration constant is again chosen so that M is
a mass of a particle at the origin. Using the relation
between 7 and h, h = — 7' /(m>Mp,p), we can show that
the solutions for f, n, and & given by Eq. (17) agree with
the solutions Egs. (20) and (22).

We have shown that the weak field solutions for
the metric Eq. (11) with D(r) = 0 have three phases
(see Fig. 1). On the largest scales, m~' < p, beyond the
Compton wavelength, the gravitational interactions decay
exponentially due to the mass of graviton; see Eq. (16) and
region 3 in Fig. 1. In the intermediate region p, <p <m™!,
we obtain the 1/r gravitational potential, but Newton’s
constant is rescaled G—4G/3. Moreover, the post-
Newtonian parameter y is y=f/(2n)=(1/2)(1+mp),
which reduces to v = 1/2 in the m — 0 limit, instead of
v = 1 of GR, showing the vDVZ discontinuity (see region 2
in Fig. 1). Finally, below the Vainshtein radius p < py, the
GR solution is recovered due to the strong coupling of
the 7 mode [see Eq. (18) and region 1 in Fig. 1]. This
background solution provides us with a testing ground for
the BD ghost. Instead of expanding the action in H,,
around the Minkowski spacetime perturbatively, one can
study linear perturbations around this nonperturbative so-
lution using the complete potential Eq. (7). In order to
obtain the fully nonlinear solution, a numerical approach
is necessary. In the next section, we consider the second
branch of solutions for this theory, which can instead be
obtained analytically.

Nondiagonal-metric branch: de Sitter—Schwarzschild
solutions.—Next, we analyze the second branch of
vacuum solutions that solve Eq. (13), where B(r) =
472 /9. Interestingly, this branch leads to asymptotically
de Sitter configurations. There is another identity
C(NTY + A(r)TY = 0, which leads to the condition

A(r) = A(r)C(r) + D*(r) = Ay = const.  (23)

5
(9m)*((117] — [T P) + Z—Ag(<97r)2([11]3

The remaining Einstein equations provide the following
unique solution (see Ref. [16] for detailed derivations):

A ="M a1l BRI =R
9A 9
C(r) = To[l —pl D) = Agyp(lp(r) + @]
(24)
where
_2u m?r? _ 16
plr) ===+ =, «=gia ! (25)

with arbitrary u and A. This solution is similar to that in
[18], up to numerical factors. Notice that this configuration
depends on two integration constants. A sufficient condi-
tion to ensure that D(r) is real is to choose u = 0 and
0 <+/Ay =4/9. The form of metric coefficients as in
Eq. (24) do not allow a manifest comparison with
de Sitter spacetime, since we have already chosen the
unitary gauge and cannot do a further coordinate trans-
formation without exciting components of 7#. However, if
we allow for a vector 77# of the form 7# = (7(r), 0, 0, 0),
the metric can be rewritten in a diagonal form as

ds? = —C(r)d* + A(r)dr* + B(r)dQ2 (26)

Then we can write down the action in terms of C, fi, B, and
m, considering them as fields. It is possible to show that
the following configuration solves the corresponding equa-
tions of motion,

i 1 von__Nplp(r) +a]
A(r)_§1——p(r)’ 770(")— 1——p(r) (27)

while C(r) and B(r) are the same as in Eq. (24). The
resulting metric has then a manifestly de Sitter—

Schwarzschild form by making a time rescaling ¢ —

4/ 9A(1)/ %)t. However, we should note that this time
rescaling cannot be done without introducing an additional
time dependent contribution to 7. As expected, the metric
in Eq. (26) can be obtained by making the following trans-
formation of the time coordinate df = dt + mdr to the
metric (11); this produces a nonzero time component of 7+
that does not vanish even in the m — 0 limit for any
allowed value of A. There are two integration constants,
p and Ay, in this solution. In GR, u corresponds to the
mass of a source at the origin, but a careful analysis
including a matter source is necessary to fully understand
the role of these integration constants. Note that there is an
apparent singularity at the horizon p(r) = 1, both for the
metric and for 7.

We can further make a coordinate transformation at the
expense of exciting further components of 7#. For ex-
ample, by setting u = 0 and making the following coor-
dinate transformations r = F,(7, p), r = F,(7, p) with
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<sinh(m7'/2) + (m2p2/8)em7/2)
arctanh R

4
F(r,p)=——
R yviEm cosh(mr/2) — (m?p?/8)e" ™2

3
F(1,p)= §Pe””/ ? (28)

the metric becomes that of flat slicing of de Sitter,
ds?> = —dt* + " (dp* + p>dQ?), (29)

where the Hubble parameter is given by m/2. The
Stiickelberg fields #* are now given by o =
(7"(7, p), w(7,p),0,0), 7" = 7o + 7~ F/(7,p), 7 =
p — F.(7, p) This is an interesting solution in which the
acceleration of the Universe is determined by the graviton
mass and the Hubble parameter is given by m/2. For
A= 16/81, this solution reduces to the “‘self-accelerating”
solution obtained in the decoupling limit in Ref. [19].

Conclusions.—The solutions obtained in the nonlinear
covariant massive gravity are remarkably similar to those
in the DGP braneworld model including the existence of
the self-accelerating de Sitter solution without cosmologi-
cal constant [20] although there are differences in detail.
There are a number of important issues. Firstly, we should
confirm that there is no BD ghost in this theory by studying
perturbations around the nonperturbative solution obtained
in this Letter. In the DGP model, the self-accelerating
solution suffers from a ghost instability [10,11,21], which
is related to the ghost in the FP theory on a de Sitter
background. Secondly, it is crucial to study the stability
of the de Sitter solution in this model. In fact Ref. [19]
showed that there exists a ghost in this self-accelerating
background in the decoupling limit for a particular value of
the second integration constant A,. They argue that this
ghost can be cured by adding higher order corrections in K
to the potential. Our formalism is ready to be applied
to this extended model. However, we believe a more
complete analysis of perturbations about our exact solution
is needed. Once these issues are clarified, the massive
gravity model presented here provides an interesting play-
ground to study large distance modifications of general
relativity.
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