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The recently developed Kraus representation for bosonic Gaussian channels is employed to study
analytically the robustness of non-Gaussian entanglement against evolution under noisy attenuator and

amplifier environments, and compare it with the robustness of Gaussian entanglement. Our results show
that some non-Gaussian states with one ebit of entanglement are more robust than all Gaussian states, even
the ones with arbitrarily large entanglement, a conclusion of direct consequence to the recent conjecture
by Allegra et al. [Phys. Rev. Lett. 105, 100503 (2010)].
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Early developments in quantum information technology
of continuous variable (CV) systems largely concentrated
on Gaussian states and Gaussian operations [1]. The sym-
plectic group of linear canonical transformations [2] is
available as a handy and powerful tool in this Gaussian
scenario, leading to an elegant classification of permissible
Gaussian processes or channels [3]. The fact that states in
the non-Gaussian sector could offer an advantage for sev-
eral quantum information tasks has resulted more recently
in considerable interest in non-Gaussian states, both ex-
perimental [4] and theoretical [5].

Since noise is unavoidable in any actual realization of
these information processes [6], robustness of entangle-
ment and other nonclassical effects against noise becomes
an important consideration. Allegra et al. [7] have thus
studied the evolution of what they call photon number
entangled states (PNES) (i.e., two-mode states of the
form |¢) = ¥ ¢,|n, n)) in a noisy attenuator environment.
They conjectured based on numerical evidence that, for a
given energy, Gaussian entanglement is more robust than
the non-Gaussian ones. Earlier Agarwal et al. [8] had
shown that entanglement of the NOON state is more robust
than Gaussian entanglement in the quantum-limited am-
plifier environment. More recently, Nha et al. [9] have
shown that nonclassical features, including entanglement,
of several non-Gaussian states survive a quantum-limited
amplifier environment much longer than Gaussian entan-
glement. Since the conjecture of Ref. [7] refers to the noisy
environment and the analysis in Refs. [8,9] to the noiseless
or quantum-limited case, the conclusions of the latter do
not necessarily amount to refutation of the conjecture of
Ref. [7]. Indeed, Adesso has argued very recently [10] that
the well-known extremality [11] of Gaussian states implies
proof and rigorous validation of the conjecture of Ref. [7].

In the present work we employ the recently developed
[12] Kraus representation of bosonic Gaussian channels to
study analytically the behavior of non-Gaussian states in
noisy attenuator and amplifier environments. Both NOON
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states and a simple form of PNES are considered. Our
results show conclusively that the conjecture of Ref. [7]
is too strong to be maintainable.

Noisy attenuator environment.—Under evolution through
anoisy attenuator channel C,(k, a), k =< 1, an input state p'™
with characteristic function (CF) yi8(£) goes to state p°™
with CF

(€)= xin(k&)e 1/DI=+alél 0

where « is the attenuation parameter [3]. In this notation,
quantum-limited channels [9] correspond to a = 0, and so
the parameter a stands for the additional Gaussian noise.
Thus, p'™ is taken under the two-sided symmetric action of
Cy(k, a) to p® = C,(k, a) ® C,(k, a)(p™) with CF

X1, €)= X (k€ k&y)e” W/DU-+a)l&P+IER) ()

To test for separability of p° we may implement the partial
transpose test on p°" in the Fock basis or on y§/'(¢;, &5).
The choice could depend on the state.

Consider first the Gaussian case, and, in particular,
the two-mode squeezed state | (u)) = sechu Y>> ;X
tanh” w|n, n) with variance matrix Vg (u). Under the
two-sided action of noisy attenuator channels C,(k, a),
the output two-mode Gaussian state p®(u) = C;(k, a) ®
Ci(r, a)(| ()Y (w)]) has variance matrix

Vom(lu) = KzVsq(:““) + (1 —K*+ a)ﬂ4,
3
T @

C2,u,]12

CH o 1 2
) “ g3
where ¢;, = cosh2u, s,, = sinh2u. Note that our vari-
ance matrix differs from that of some authors by a factor 2;

in particular, the variance matrix of vacuum is the unit
matrix in our notation. Partial transpose test [13] shows
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that p°"(uw) is separable iff a = «*(1 — e~2*). The “addi-
tional noise” a required to render p®*(w) separable is an
increasing function of the squeeze (entanglement) parame-
ter u and saturates at «>. In particular, | (u;)), u =
0.5185 corresponding to one ebit of entanglement is ren-
dered separable when a = «k*(1 — e 2*1). For a = k2,
p°(u) is separable, independent of the initial squeeze
parameter w. Thus a = «? is the additional noise that
renders separable all Gaussian states.

Behavior of non-Gaussian entanglement may be handled
directly in the Fock basis using the recently developed
Kraus representation of Gaussian channels [12]. In this
basis quantum-limited attenuator C;(k;0), k =1 and
quantum-limited amplifier C,(k;0), x = 1 are described,
respectively, by Kraus operators [12]

Bi(k) = i V’”MC{(\/I - K2)€Km|m><m + ¢,
m=0
A0 =L S (VTR L+ e

m=0

€=0,1,2,---.In either case, the noisy channel Cj(K; a),
Jj =1, 2 can be realized in the form C,(k,;0) o C;(x;;0),
so that the Kraus operators for the noisy case is simply
the product set {Ag(k;)B¢(k;)}. Indeed, the composi-
tion rule Cz(Kz;O) ° CI(KI;O) = CI(K2K1; 2(K% - 1))
or Cy(kyki32k3(1 — k7)) according as kyk; =1 or
Kok; = 1 implies that the noisy attenuator C,(k;a),
k = 1 is realized by the choice k, = /1 + a/2 =1,k =
k/Kky = k = 1, and the noisy amplifier C,(k; a), K = 1 by
Ky=+K2+a/2=k=1, kK, =«k/k; =1 [12]. Note
that one goes from realization of C,(x;a), k =1 to
that of C,(k;a), k = 1 simply by replacing (1 + a/2) by
(k% + a/2); this fact will be exploited later.

Under the action of C;(k;a) = Cy(ky;0) o Ci(ky;0),
j = 1, 2 the elementary operators |m){n| go to

Ca(k230) o Cy(ky; 0)(Im)nl)

oo min(m,n)

=K;22 Z [m7€+jcjn7€+jcjmcencé]l/Z

=0 =0
X (5 ') 2001 — 12V (1 = k3 m — € + j)
X{n—4€+jl 4)

Substitution of k, = /1 + a/2, kK, = k/k, gives realiza-

tion of C;(k; a), k = 1 while k, = V&> + a/2, k; = k/K,
gives that of Cy(k; a), k = 1.

As our first non-Gaussian example we study the NOON
state |¢) = (|n0) + |0n))/+/2 with density matrix

= 5(In)nl @ 10)0] + [n)(0] ® [0)n]
+10)n| @ [n)0] + [0)X0[ @ [n)nl). (5)

The output state p°* = C;(k;a) ® C;(k; a)(p) can be de-
tailed in the Fock basis through use of Eq. (4).

To test for inseparability, we project p°" onto the
2 X 2 subspace spanned by the four bipartite vectors
{100), |0n), |n0), |nn)}, and test for entanglement in this
subspace; this simple test proves sufficient for our purpose.
The matrix elements of interest are pgg'y, Panan. and
Plnn0 = Puoon Negativity of 8y(x, @) = pigooPimmm —
lpga,1* will prove for p® not only NPT (nonpositive
under partial transpose) entanglement, but also one-copy
distillability [14].

To evaluate pgg'og. PO 0- a0 Pi s it suffices to evolve
the four single-mode operators [0){0], |0)n|, [n){0|, and
|[n)(n| through the noisy attenuator C,(k; a) using Eq. (4),
and then project the output onto one of these operators.
For our purpose we need only the following single-mode
matrix elements:

x1 = (nley (e a)(ImnDln)
— (1 + 4/ SC IR + a/2) 2]
€=0

X[ = 21+ /20— (1 +a/2) ),

2 = (016 (: ) In)nD)0)

=1 +a/2)7'[1 = &*(1 +a/2)7'],
x3 = (01C, (k; @)(J0XODI0) = (1 + a/2)7",
xy = (n|Cy (k3 a)(|0)X0Dn)

=0+a/2"'[1 -0 +a/)7'T,
x5 = (nlC; (i a)(In)ODI0) = (1 + a/2)~ "+,

= (0IC, (x; a)(|0)n ) n)". (6)

out out — out — 2
One finds p§o) = X2X3, Ponan = X1X4, and pgi', o = x5/2,
and therefore

81(k, a) = xyxax3xg — (|xs52/2)%. @)

Let a, (k) be the solution to &(k, @) = 0. This means that
entanglement of our NOON state survives all values of
noise a < a;(k). The curve labeled N5 in Fig. 1 shows, in
the (a, k) space, a;(k) for the NOON state with n = 5:
entanglement of (]50) + [05))/+/2 survives all noisy at-
tenuators below Ns. The straight line denoted g, corre-
sponds to a = k’: channels above this line break
entanglement of all Gaussian states, even the ones with
arbitrarily large entanglement. The line g; denotes a =
k*(1 — e 2#1), where w; = 0.5185 corresponds to 1 ebit
of Gaussian entanglement: Gaussian entanglement = 1
ebit does not survive any of the channels above this line.
The region R of channels above g, but below N5 are
distinguished in this sense: no Gaussian entanglement
survives the channels in this region, but the entanglement
of the NOON state (|50) + |05))/+/2 does.
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FIG. 1. Comparison of the robustness of the entanglement of a
NOON state with that of two-mode Gaussian states under the
two-sided action of symmetric noisy attenuator.

As a second non-Gaussian example we study the PNES
l4) = (100) + |nny)/+/2 with density matrix

p= %(IOXOI ® |0)0] + |0)n| ® [0)n]
+ [n)0] @ [n)O0] + [n)n| ® |n)nl). ®)

The output state p°* = C,(k;a) ® C,(x;a)(p) can be de-
tailed in the Fock basis through use of Eq. (4).

Now to test for entanglement of p°", we again project
p°" onto the 2 X 2 subspace spanned by the vectors
{100), |0n), |n0), |nn)}, and see if it is (NPT) entangled in
this subspace. Clearly, it suffices to evaluate the matrix
elements pSETOn’ pgl(;fn()’ and pgg,tnn’ for if 62(K: Cl) =
PP 0 — |G, |* is negative then p° is NPT en-
tangled, and one-copy distillable.

Once again, the matrix elements listed in (6) prove
sufficient to determine 8,(k, a): pGy',0 = Pho0 = (X1 +
x3x4)/2, and p,, = lxs|*/2, and so

8y(k, a) = (x5 + x3x)/2)* = (Ixs17/2)>. 9

Let a,(x) denote the solution to &,(k, a) = 0. That is,
entanglement of our PNES survives all a =< a,(x). This
a,(k) is shown as the curve labeled Ps in Fig. 2 for the
PNES (|00) + |55))/+/2. The lines g, and g. have the
same meaning as in Fig. 1. The region R above g, but
below Ps corresponds to channels (x, @) under whose
action all two-mode Gaussian states are rendered
separable, while entanglement of the non-Gaussian PNES
(|00) + |55))/+/2 definitely survives.

Noisy amplifier environment.—We turn our attention
now to the amplifier environment. Under the symmetric
two-sided action of a noisy amplifier channel C,(k;a),
k = 1, the two-mode CF xi (£, &) is taken to

X (€1 &) = Xiv?/(be Kfz)e_(l/z)(K2_1+a)(|§‘|2+|§2|2)-

In particular, the two-mode squeezed vacuum state | (u))
with variance matrix V,(u) is taken to a Gaussian state
with variance matrix
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FIG. 2. Comparison of the robustness of the entanglement of a
PNES state with that of two-mode Gaussian states under the
action of two-sided symmetric noisy attenuator.

Vou(p) = k2Vog(p) + (2 — 1+ @)l (10)

The partial transpose test [13] readily shows that the output
state is separable when a = 2 — k?(1 + e 2#): the addi-
tional noise a required to render the output Gaussian state
separable increases with the squeeze or entanglement pa-
rameter u and saturates at a = 2 — «%; fora = 2 — «? the
output state is separable for every Gaussian input. The
noise required to render the two-mode squeezed state
| (1)) with 1 ebit of entanglement (u; = 0.5185) sepa-
rable is a = 2 — k%(1 + e 2#1),

Now we examine the behavior of the NOON state
(|n0) + |0n))/+/2 under the symmetric action of noisy
amplifiers C,(k;a), k = 1. Proceeding exactly as in the
attenuator case, we know that p° is definitely entangled
if 83(k, a) = piiooPimmm — 1PGaol* is negative. As re-
marked earlier the expressions for Ci(k;a), k =1 in
Eq. (6) are valid for C,(k; a), k = 1 provided 1 + a/2 is
replaced by k> + a/2. For clarity we denote by x; the
expressions resulting from x; when Ci(k;a), Kk =1 1is re-
placed by Cy(k;a), k =1 and 1 + a/2 by x> + a/2. For
instance, x4 = (n|C,(x;a)(In)01)|0) = " (k> +a/2)~"*V
and 85 (x: @) = xjsahg — (15°/2).

FIG. 3. Comparison of the robustness of the entanglement of a
NOON state with that of all two-mode Gaussian states under the
action of two-sided symmetric noisy amplifier.
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FIG. 4. Comparison of the robustness of the entanglement of a
PNES state with that of all two-mode Gaussian states under the
action of two-sided symmetric noisy amplifier.

Let a3(k) be the solution to 85(k, a) = 0. This is repre-
sented in Fig. 3 by the curve marked N5, for the case of the
NOON state (|05) + |50))/+/2. This curve is to be com-
pared with the line a = 2 — «?, denoted g.,, above which
no Gaussian entanglement survives, and with the line
a=2—k*(1+ e %), u, = 0.5185, denoted g,, above
which no Gaussian entanglement = 1 ebit survives. In
particular, the region R between g, and N5 corresponds
to noisy amplifier channels against which entanglement of
the NOON state (|05) + |50))/+/2 is robust, whereas no
Gaussian entanglement survives.

Finally, we consider the behavior of the PNES (|00) +
|nn))/~/2 in this noisy amplifier environment. The output,
denoted p°, is certainly entangled if &4(k, a) =
PP 0 — |pEet, | is negative. Proceeding as in the
case of the attenuator, and remembering the connection
between x;’s and the corresponding x}’s, we have
84(k, @) = ((x}xh + x4x})/2)* — (Ix51?/2)%. The curve de-
noted Ps in Fig. 4 represents a4(x) forming solution to
84(k, a) = 0, for the case of the PNES (|00) + [55))/~/2.
The lines g, and g; have the same meaning as in Fig. 3.
The region R between g, and Ps5 signifies the robustness of
our PNES: for every k = 1, the PNES is seen to endure
more noise than Gaussian states with arbitrarily large
entanglement.

We conclude with a pair of remarks. First, our conclu-
sion following Egs. (3) and (10) that entanglement of two-
mode squeezed (pure) state |4 (w)) does not survive, for
any value of w, channels (k, a) which satisfy the inequality
|1 — k*| + a = 1 applies to all Gaussian states. Indeed, for
an arbitrary (pure or mixed) two-mode Gaussian state with
variance matrix Vg it is clear from Egs. (3) and (10) that
the output Gaussian state has variance matrix VU =
Ve + (|1 — k¥?| + a)1,. Thus |1 — k¥*| + a = 1 imme-
diately implies, in view of nonnegativity of V., that
Vveout = 1,, demonstrating separability of the output state
for arbitrary Gaussian input [13].

Second, Gaussian entanglement resides entirely “in”
the variance matrix, and hence disappears when

environmental noise raises the variance matrix above the
vacuum or quantum noise limit. That our chosen states
survive these environments shows that their entanglement
resides in the higher moments, in turn demonstrating that
their entanglement is genuine non-Gaussian. Indeed, the
variance matrix of our PNES and NOON states for N = 5
is 6 times that of the vacuum state.
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