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A systematic and simple theoretical approach is proposed to analyze true degeneracies and polarized

decay patterns of exciton complexes in semiconductor quantum dots. The results provide reliable spectral

signatures for efficient symmetry characterization, and predict original features for low C2v and high

C3v symmetries. Excellent agreement with single quantum dot spectroscopy of real pyramidal

InGaAs=AlGaAs quantum dots grown along [111] is demonstrated. The high sensitivity of biexciton

quantum states to exact high symmetry can be turned into an efficient uninvasive postgrowth selection

procedure for quantum entanglement applications.
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Symmetries play a key role for understanding the elec-
tronic band structure of crystals [1], the optical spectra of
atoms [2], or the optical properties of semiconductors [3].
Excitons are elementary excitations in semiconductors [4]
and in semiconductor quantum nanostructures. An exciton
is generated when an electron from the valence band is
promoted to the conduction band by the absorption of a
photon, thereby creating a hole in the valence band.
The quantum states of the correlated electron-hole pair,
the exciton, are determined by the interplay between the
Coulomb interaction between the two charge carriers and
the symmetries of the band edges in the crystalline solid in
general [5], and of the nanostructure’s shape, size and
composition in particular [6]. The fine structure of an
exciton confined to a quantum dot (QD) is determined by
the electron-hole exchange interaction and it has been
intensively studied in numerous QD structures [7,8], high-
lighting the influence of strain and shape [9] and the effect
of charging [10,11]. The excitonic fine structure and the
polarization of the optical transitions have profound rela-
tions with the underlying symmetries of the nanostructures.
However, despite the usual interpretation of polarization
anisotropy in terms of valence-band mixing [12], and a
recent demonstration of the vanishing fine-structure split-
ting in QDs [13,14], a general understanding of the relation
between symmetry and the complex polarization spectra of
excitons and excitonic complexes is still lacking.

We shall first show in this Letter that the present under-
standing of the polarization properties of excitons in
strongly confined C2v QDs—a common widespread
symmetry—is in drastic contrast with general group-
theoretical considerations. Next we present our approach,
which makes simultaneous use of basic qualitative infor-
mation available on the first few QD electron and hole
states. We show that new light can be shed on degeneracy
lifting, on the nature of dark states, on polarized decay
of excitons (X) and biexcitons (2X), even in more compli-
cated C3v symmetry QDs. Detailed analysis of polarized

photoluminescence (PL) of pyramidal QDs, fully estab-
lishes the power of this approach.
C2v QDs have been intensively investigated since they

are produced readily in Stranski-Krastanov growth mode
[7]. A prominent C2v feature is the fine-structure splitting
between the x- and y-polarized bright exciton states, in-
duced by the exchange interaction [7]. Another well-
known feature is the alleged presence of two dark states
with parallel spins [15]; this widespread description is
however in contradiction with a simple group-theoretical
study of such excitons.
A group-theoretical approach of the polarization prop-

erties of the excitonic states in QDs requires three steps:
(i) identification of the QD point group (PG), resulting
from the common symmetry elements between the crystal
symmetry and the QD symmetry (mesoscopic level),
(ii) labeling each quantum state of interest with its global
symmetry properties, i.e., with irreducible representations
� (irreps) of the PG, (iii) the use of optical selection rules,
given by the Wigner-Eckart theorem.
For C2v QDs, the irreps labeling the symmetry of the

ground electron and hole states e1 and h1 may only be �e1 ,

�h1 ¼ E1=2, since there is only one double group irrep in

C2v. This holds independently of any model. Then one can
immediately determine the symmetry labels of the exci-
tonic product states of e1 and h1 using the multiplication
tables [16]: E1=2 � E1=2 ¼ A1 þ B1 þ B2 þ A2. Assuming

the strong confinement limit (SCL), Coulomb interactions
will slightly lift their degeneracy within a configuration
[17]. It follows that in strongly confined C2v QDs there
exist only four kinds of ground states of X to which one
should attach the labels A1, B1, B2 and A2. To know their
optical activity, we recall that the dipole moment �k,
k ¼ x, y, z transforms like vectors along x, y, z, which
are labeled with irreps B1, B2, A1, respectively, (convention
of [16]). Consequently using the Wigner-Eckart theorem
we find that each of the three states labeled A1, B1, B2 is
optically active in a specific linear polarization, while there
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exists only one dark state labeled A2. These general results
are in sharp contrast with current understanding, for which
two dark states exist [15,18]. It is possible to show [17] that
the nondegenerate character of states A1 and A2 can be
interpreted as a sign of valence-band mixing, an effect akin
to III-V QDs. The optical activity in the z direction of the
state A1 can consistently be attributed to mixing of the
ground heavy hole (HH) state with some light hole (LH)
component. An approach to polarization anisotropy solely
based on valence-band mixing arguments is, however,
unable to match the strict group-theoretical prediction
that every state couples uniquely to its own single linear
polarization, and that there is only one state remaining
strictly dark.

For higher symmetry, there are more double group irrep
labels. We consider now C3v QDs, like pyramidal zinc
blende QDs grown in the [111] direction [14]. HH and
LH now refer to Bloch functions labeled uh;j¼ð3=2Þ;m, where
m is associated with the angular momentum Jz along
[111]. One must associate global symmetry labels to e1,
h1, and h2. e1 is necessarily labeled with irrep E1=2 of C3v.

As h1 and h2 dominantly display ground HH and ground
LH character [19], in agreement with their oblate or prolate
spheroidal shapes (h2 hybridizes largely with the con-
nected vertical quantum wire), one can associate irreps
E3=2 (strictly speaking 1E3=2 þ 2E3=2) and E1=2 to h1 and

h2, respectively. This can be done by considering the
dominant contribution to every wave function as being
a product of a single envelope function and a
heterostructure-symmetrized hole Bloch function [20]
(the latter can also be considered as a simple ‘‘discrete
PG pseudospin’’ (DPGPS) [17]). For example, the symme-
try of a ground LH-like state must be the same as in the

product �A1

LHðrÞuE1=2;�
LH ðrÞ, where �A1

LH is the envelope and

u
E1=2;�
LH ¼ uh;ð3=2Þ;m, � ¼ 3

2 �m, m ¼ � 1
2 is the DPGPS (�

is the partner function index linked with irrep E1=2 [16]).

Note that uh;ð3=2Þ;m is a hole Bloch function, i.e., the proper

time conjugate of its valence-band electron image.
Previous theoretical and experimental work [21,22] has
shown that several subtle features of C3v quantum wires
and QDs could be interpreted if one assumes an additional
symmetry plane �h perpendicular to [111], leading to an
effective D3h PG, an effect called ‘‘symmetry elevation.’’
Intuitively, one may justify this: (i) the crystalline bulk
structure of GaAs displays in many respects only weak
inversion symmetry breaking, (ii) on the mesoscopic side,
a pyramidal C3v QDmay be considered as a weakly curved
(with respect to �h) oblate spheroid for HH-like h1, and as
a weakly deformed prolate spheroid for LH-like h2, as
demonstrated by eight-band k � p calculations [22]. In
this case we assign the labels E3=2 and E5=2 to h1 and h2
respectively, if one keeps the label E1=2 for e1. These

symmetry assignments, if correct, will no longer depend
on a particular description (k � p model, pseudopotential
approach, etc.) as they only refer to basic global trans-
formation properties of quantum states e1, h1 and h2. They
will be enough for building the lower lying complexes in
the SCL.
We now assign the symmetry to lower lying groups of

X and 2X states in the SCL by again using the product rule.
In C3v, the HH-like exciton states issuing from h1 (denoted
here X10) are described by E1=2 � E3=2 ¼ Eþ E, while

one finds E0 þ E00 in D3h. The LH-like exciton states
(denoted X01) are described by the product E1=2 � E1=2 ¼
A1 þ Eþ A2 in C3v or A

0
1 þ E00 þ A0

2 inD3h. Fundamental

twofold degeneracies appear, linked with two-dimensional
E-type irreps. For 2X states, one should first make the
products for electron and holes separately, to easily ac-
count for Pauli exclusion. When two electrons (holes)
occupy the same e1 (h1) state, they are in a restricted
configuration and globally display A1 symmetry. As a
result, the nondegenerate ground biexciton (denoted

TABLE I. Typical symmetries of the first quantum states (individual carriers and excitons) in
the case of point group symmetries C2v, C3v and D3h. Xij and 2Xij refers to excitons and

biexcitons respectively, with all electrons in e1, and i, j holes in levels h1, h2, respectively.

Carrier C2v C3v D3h

e1 E1=2 E1=2 E1=2

h1 E1=2 E3=2 E3=2

h2 E1=2 E1=2 E5=2

Complex C2v C3v D3h

X10 A1 þ B1 þ B2 þ A2 Eþ E E0 þ E00
X01 A1 þ B1 þ B2 þ A2 A1 þ Eþ A2 A00

2 þ E0 þ A00
1

2X20 A1 (Pauli restriction) A1 (Pauli restriction) A0
1 (Pauli restriction)

2X11 A1 þ B1 þ B2 þ A2 Eþ E E0 þ E00

PRL 107, 127403 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

16 SEPTEMBER 2011

127403-2



2X20) also bear the label A1 (or A
0
1 inD3h). Furthermore the

biexciton with two electrons in e1 and two holes in con-
figuration (h1, h2) (denoted 2X11) will give rise to four
states since ð1E3=2 þ 2E3=2Þ � E1=2 ¼ Eþ E in C3v (and

E3=2 � E1=2 ¼ E0 þ E00 inD3h). Hence the 2X11 states will

be twofold degenerate and correspond to the irrep E inC3v,
or E0 and E00 in D3h.

Let us now turn to the possible optical decay paths. To
this end, one further needs the symmetry of the dipole
moments �k, k ¼ x, y, z (Cartesian vector components),
and one finds E for (x, y) and A1 for z, respectively, in
symmetry C3v. In D3h the corresponding result is E0 for
(x, y) and A00

2 for z. To evaluate the possibility of an optical
transition from the initial 2X or X state jXini to the final

state jXfini (X or vacuum), or to examine polariza-
tion isotropy [17], one must consider hXfinj�kjXini, k ¼
x, y, z with the Wigner-Eckart theorem. All the relevant
complexes are summarized in Table I, and optical decay
paths are represented in Fig. 1. A few comments are worth
making: (i) the higher the symmetry, the more selective are
the selection rules, remarkably symmetry elevation does
not produce new degeneracies, (ii) the oscillator strength
for C3v (and D3h) is isotropic in the xy plane, and
(iii) surprisingly only one of the bright HH-like X10 states
remains bright in D3h symmetry (E0), the other becoming
dark (E00).
Experiments were performed on arrays of QDs fabri-

cated by low-pressure organometallic chemical vapor dep-
osition in inverted tetrahedral micro-pyramids patterned on
a 2�-off GaAs (111)B substrate. Thin QDs (�1:5 nm) self-
formed due to growth anisotropy and capillarity effects
from a nominally 0.5 nm thick In0:10Ga0:90As layer at
the center of the pyramids were sandwiched between
Al0:30Ga0:70As barriers. Individual back-etched QDs were
studied at a temperature of 10 K by means of micro-PL
(�1 �m spot size) with a spectral resolution of 50 �eV.
The samples were investigated both in a top-view geome-
try with PL signal collected along the z direction [111],
and in a side-view geometry with the signal collected
from the cleaved edge along the x direction ½1�10�.
The linear polarization in the xy plane and in the yz plane
could be analyzed (with a contrast of 50:1) for the two
geometries by rotating a �=2 phase retardation plate placed

FIG. 1. Predicted polarized radiative decay paths of 2X11.
Solid and dotted lines represent allowed transitions with � and
z polarization, respectively, (� � x=y=��).

FIG. 2. Polarization resolved PL spectra of QDT (a) and (b)
and QDS (c)–(e), normalized to the intensity of X�10. Grey solid
lines are peak fits, with the individual peaks shown below in
solid (dotted) black lines for transitions allowed (forbidden)
under D3h, for the measured polarization direction. [The fit
yields vanishing intensity of �5 in (a).]
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in conjunction with a fixed linear polarizer in the signal
path. In this Letter, data of two C3v symmetry QDs will be
presented, one measured from the top (QDT) and the other
from the side (QDS).

The attention is here restricted to the excited biexciton
2X11 and to the two single-excitons X10 and X01. The
measured biexciton optical transitions 2X�11 and 2X1�1

(denoted by a bar above the index of the recombining
hole) are presented in Fig. 2 and should be analyzed using
the derived decay schemes in Fig. 1. Identification of the
emission lines can be achieved with the aid of strict energy
relations stemming from these decay schemes. For
example, both cascades 2X1�1 ! X�10 and 2X�11 ! X0�1

have identical initial and final states, implying �3 þ �X�
01
¼

�7 þ �X10
and �1 þ �X�

01
¼ �9 þ �X10

. Since the energy

spacings between some emission lines are comparable
with their spectral linewidths, the PL spectra are analyzed
by peak fitting. The x- (y-) polarized spectra of QDT
reveal a high degree of polarization isotropy [in Figs. 2(a)
and 2(b)], as theoretically expected for C3v symmetry.
Accordingly, the xy-averaged spectra of QDT were fitted
accounting for the C3v transitions in Fig. 1, assuming Voigt
peak profiles with identical linewidths for all 2X11 transi-
tions. The result shown in Fig. 2(a) demonstrates that 2X�11

is dominated by three emission lines �1–3, in consistency
with symmetry elevation from C3v to D3h, for which only
three transitions �1–3 are optically allowed out of the pre-
dicted set of six �1–6. Also for 2X1�1, the major contribution
comes from the D3h transitions �7–8 [see Fig. 2(b)].

The group-theoretical predictions were also verified for
vertically polarized transitions; to this aim, the analysis
was performed for polarizations in the yz plane on QDS
[see Figs. 2(c)–2(e)]. Both �- and z-polarizations were
observed for 2X1�1, in agreement with Fig. 1(a), while
only �-polarized components could be detected for 2X�11.
The latter fact can be understood only by the strong HH-
like character of h1, which strongly reduces the oscillator
strength along z. QDS exhibits �50% wider spectral line-
width than QDT, and in this case a reliable fit with six
peaks (�1–6) for 2X�11 could not be obtained. The expect-
edly weak �4–6 transitions were therefore excluded from
the peak fit for QDS. The effect of symmetry elevation is
again clearly observed for 2X1�1 in Figs. 2(d) and 2(e),
where �7–8 dominates the �-polarization, while �9–10
dominates the z polarization, in consistency with the D3h

selection rules in Fig. 1(a). Possible polarization crosstalk
is minor [17], and the fact that none of �7–10 are com-
pletely polarized for QDT and QDS reflects the approxi-
mate nature of symmetry elevation: all four transitions are
allowed for any polarization vector for the actual symmetry
C3v [see Fig. 1(a)].

Furthermore the fine structure of 2X11, X10 and X01,
caused by electron-hole exchange (�eh) and hole-hole
exchange (�hh), can be fully extracted from the measured
transition energies according to relations derived

from Fig. 1, namely �2 � �1 ¼ �1
eh þ �2

eh, �3��2¼
�hh��2

eh, and �7 � �8 ¼ �hh ��0
eh, �8 � �9 ¼ �0

eh.

The resulting experimental values of splitting energies
for QDT and QDS are summarized in Table II. Note that
the emission patterns of 2X11 also provide the information
about the dark states of X10 and X01, which are otherwise
not accessible by any direct optical measurements of these
excitons (or from the ground biexciton 2X20). The dark
state of X10 was predicted numerically by pseudopotential
calculations [13]. Nevertheless, this staggering effect is
fundamentally explained only by invoking symmetry ele-
vation (using label E00 of D3h). The absence of a corre-
sponding X�10 and X�20 transitions is confirmed in the optical
spectra supplied in [17].
It should be pointed out that any breaking of the sym-

metry below C3v would be evidenced by lifting the degen-
eracy and xy-polarization isotropy of the E-type states. The
E levels of X10, X01, and 2X11 were carefully verified for
QDT, and a splitting of �X10

(into x- and y-polarized

components) could not be resolved within the precision
of the measurements, �5 �eV. Such splittings, particu-
larly on the biexciton lines, do form very sensitive probes
of the exact C3v (D3h) symmetry of the QD [17].
Finally, we emphasize that our approach is applicable to

all QD systems with symmetry, whether they are nearly
strain-free GaAs=AlGaAs QDs, or InGaN and AlGaN QDs
with close uppermost valence bands and strain. Such vari-
ety enables different routes towards QD-based optical
quantum information technologies. Our method is inde-
pendent of specifics like detailed shape, strain, or valence-
band mixing, and provides comprehension of the role of
spin and of the excitonic fine-structure which are always of
uppermost importance in this context [23].
To conclude, we propose a general approach for the

understanding of the fine-structure of complexes in QDs
that does not require heavy computations and provides
sets of consistent spectroscopic signatures able to identify
particularly symmetric quantum states. The entire pre-
dicted emission patterns of X and 2X are completely
mapped from the experiment, including polarization de-
pendence and the strictly dark states. We have evidenced X
and 2X states in pyramidal QDs that indeed possess the
high C3v symmetry, and studied subtle effects associated
with signatures of symmetry elevation towards D3h.
Furthermore, this approach predicts features previously
missed by other approaches, e.g., that C2v QDs possess
strictly one dark ground exciton state and not two. These
results may influence the design and the choice of QDs
tailored for quantum information processing.

TABLE II. Extracted exchange splittings (�) in units of �eV.

�0
eh �1

eh �2
eh �hh

QDT 162 151 76 222

QDS 172 155 62 265
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