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We propose a simple realization of the three-dimensional (3D) Weyl semimetal phase, utilizing a

multilayer structure, composed of identical thin films of a magnetically doped 3D topological insulator,

separated by ordinary-insulator spacer layers. We show that the phase diagram of this system contains a

Weyl semimetal phase of the simplest possible kind, with only two Dirac nodes of opposite chirality,

separated in momentum space, in its band structure. This Weyl semimetal has a finite anomalous Hall

conductivity and chiral edge states and occurs as an intermediate phase between an ordinary insulator and

a 3D quantum anomalous Hall insulator. We find that the Weyl semimetal has a nonzero dc conductivity at

zero temperature, but Drude weight vanishing as T2, and is thus an unusual metallic phase, characterized

by a finite anomalous Hall conductivity and topologically protected edge states.
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The recent discovery of time-reversal (TR) invariant
topological insulators (TIs) [1] has led to a surge of interest
in topological properties of the electronic band structure of
crystalline materials. TIs exhibit a bulk gap but gapless
surface states, whose gaplessness is protected by topology.
Remarkably, recent work has demonstrated that such a
surface-bulk correspondence can also be obtained even
when the bulk is gapless, by virtue of point touchings of
nondegenerate conduction and valence bands [2]. Such
accidental point touchings have been known to exist since
the earliest days of the theory of solids [3], but their
topological properties have been appreciated only much
more recently [2,4–6], and concrete materials, where they
may be found, have been proposed [2,6]. Nontrivial and
robust band touching requires either broken TR or inver-
sion [2,3,5], in which case the touching points acquire
topological character and thus give rise to stable phases
of matter. The band structure near these points can be
described by a massless two-component Dirac or Weyl
Hamiltonian:

H ¼ �vF� � k; (1)

where k is the crystal momentum in the first Brillouin
zone (BZ), expanded near the band-touching point, � is
the triplet of Pauli matrices, and the sign in front corre-
sponds to two different possible chiralities, characterizing
the point. Such Weyl fermions have been studied exten-
sively in high-energy physics, in particular, as a description
of neutrinos [4], and may be viewed as topological defects
(hedgehogs) in momentum space [4]. Any perturbation of
Eq. (1) only shifts the degeneracy point in energy or
momentum but does not remove it: An isolated Weyl
fermion in this sense possesses an absolute topological
stability (this is in contrast to 2D massless Dirac fermions
in graphene, where inversion symmetry of the honeycomb
lattice is essential for their stability). Very general consid-

erations show that Dirac degeneracy points can occur only
in pairs of opposite chirality [7] and can thus be eliminated
by pairwise annihilation. When the TR or inversion sym-
metry is broken, however, the Weyl fermions are separated
in momentum space and thus, assuming translational sym-
metry remains intact, are still topologically stable.
Reference [2] has proposed a possible realization

of a Weyl semimetal with 24 Dirac nodes in iridium
pyrochlores, which are strongly correlated magnetic
materials (a different scenario for this material was
proposed in Ref. [8]). The purpose of this work is to
propose a much simpler realization of the Weyl semimetal,
not relying on strong correlations in a rather complex
material. The Weyl semimetal we propose also possesses
only two Dirac nodes, the smallest possible number, and
thus is in a sense the most elemental realization of this
phase of matter.
The material we propose is a multilayer heterostructure,

consisting of alternating layers of a 3D TI material, such as
Bi2Se3, and an ordinary insulator, which serves as spacer
material between the neighboring TI layers, as shown in
Fig. 1. The ability to grow ultrathin high-quality films of
Bi2Se3 has been clearly demonstrated in recent experi-
ments [9]. It is thus quite realistic to expect that a multi-
layer heterostructure, consisting essentially of a stack of
such thin films, can be fabricated by using available tech-
nology. The Hamiltonian, describing this heterostructure,
can be written as

H ¼ X
k?;ij

�
vF�

zðẑ� �Þ � k?�i;j þm�z�i;j þ�S�
x�i;j

þ 1

2
�D�

þ�j;iþ1 þ 1

2
�D�

��j;i�1

�
cyk?ick?j: (2)

The first term in Eq. (2) describes the two (top and bottom)
surface states of an individual TI layer. We assume for
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simplicity that a TI material with a single two-dimensional
(2D) Dirac node per surface BZ is employed. vF is the
Fermi velocity, characterizing the surface Dirac fermion,
which we take to be the same on the top and bottom surface
of each layer. k? is the momentum in the 2D surface BZ
(we use @ ¼ 1 units), � is the triplet of Pauli matrices
acting on the real spin degree of freedom, and � are Pauli
matrices acting on the surface pseudospin degree of
freedom. The indices i and j label distinct TI layers. The
second term describes exchange spin splitting of the sur-
face states, which can be induced, for example, by doping
each TI layer with magnetic impurities, as has been re-
cently demonstrated experimentally [10]. The remaining
terms in Eq. (2) describe tunneling between top and bottom
surfaces within the same TI layer (the term proportional to
�S) and between top and bottom surfaces of neighboring
TI layers (terms proportional to �D). Longer-range tunnel-
ing is assumed to be negligible. We will regardm and �S;D

as tunable parameters and study the phase diagram of
Eq. (2) as a function of these parameters.

Let us initially assume that the spin splitting is absent,
i.e., setm ¼ 0. Diagonalizing Eq. (2), one finds the follow-
ing band dispersion:

�2k� ¼ v2
Fðk2x þ k2yÞ þ�2ðkzÞ; (3)

where �ðkzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

S þ �2
D þ 2�S�D cosðkzdÞ

q
and d is the

superlattice period (i.e., the TI layer plus spacer layer
thickness) in the growth (z) direction. This band structure
is fully gapped when j�Sj � j�Dj but contains Dirac nodes
when �S=�D ¼ �1. The nodes are located at kz ¼ �=d
when �S=�D ¼ 1 and at kz ¼ 0 when �S=�D ¼ �1
(kx ¼ ky ¼ 0 always). While both cases are possible, we

will assume the former for concreteness and will take both
tunneling matrix elements to be positive (this choice does
not affect any of our results). Expanding the band disper-
sion near the Dirac point at kx ¼ ky ¼ 0, kz ¼ �=d to

leading order in the momentum, one obtains

�2k� ¼ v2
Fðk2x þ k2yÞ þ ~v2

Fk
2
z ; (4)

where ~vF ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�S�D

p
. The momentum-space Hamiltonian

near the Dirac node has the form

H ðkÞ ¼ vF�
zðẑ� �Þ � kþ ~vF�

ykz; (5)

which can be brought to a block-diagonal form, explicitly
revealing a pair of two-component Weyl fermions with
opposite chirality, by a �=2 rotation around the x axis in
the pseudospin space. Alternatively, in total this is a con-
ventional four-component massless Dirac fermion. As dis-
cussed above, since the two Weyl fermions are located at
the same point in momentum space, they are topologically
unstable. Any perturbation, for example, any deviation of
the ratio �S=�D from unity, immediately eliminates the
degenerate Dirac node and produces a fully gapped spec-
trum. With m ¼ 0, the massless Dirac point can be under-
stood [5] as a critical point between topological (�D > �S)
and ordinary (�D < �S) insulators with both inversion and
time-reversal symmetry preserved [see Fig. 2(a)]. To pro-
duce a topologically stable phase with 3D Dirac nodes, the
nodes have to be separated in momentum space. As men-
tioned above, this can generally be accomplished by break-
ing either TR or inversion symmetries, and there are in
principle many ways to do this. Here we will focus on one
particular way, which is perhaps the simplest from the
point of view of a practical realization. Namely, as already
mentioned above, we will assume that each TI layer is
doped with magnetic impurities, producing a ferromagneti-
cally ordered state within each layer, with magnetization
along the growth direction of the heterostructure. This
leads to spin splitting of the surface states of magnitude
m, described by the second term in Eq. (2). The band
dispersion is now given by

�2k� ¼ v2
Fðk2x þ k2yÞ þ ½m��ðkzÞ�2: (6)

This dispersion has two nondegenerate Dirac nodes, sepa-
rated along the z axis in momentum space, with locations
given by kz ¼ �=d� k0, where

k0 ¼ 1

d
arccosf1� ½m2 � ð�S � �DÞ2�=2�S�Dg: (7)

The nodes exist as long as

m2
c1 ¼ ð�S � �DÞ2 <m2 <m2

c2 ¼ ð�S þ�DÞ2: (8)

Thus, as discussed above, splitting of the degenerate Dirac
node inmomentum space produces a stableWeyl semimetal
phase, existing in a finite region of the phase diagram
[Fig. 2(b)]. The Weyl semimetal occurs as an intermediate
phase between an ordinary insulator (m2 <m2

c1) and a 3D
quantum anomalous Hall (QAH) insulator [11] with
quantized Hall conductivity, equal to e2=h per TI layer
(m2>m2

c2). As m is increased from zero, a degenerate
Dirac point at kx ¼ ky ¼ 0, kz ¼ �=d appears at the lower

critical value (mc1) of the spin splitting. The Dirac node is
split along the z axis into two nondegenerate nodes in
the Weyl semimetal phase, with the splitting increasing
monotonically with the magnitude of m. At the upper

TI

d
TI

TI

FIG. 1. Schematic drawing of the proposed multilayer struc-
ture. Unhashed layers are the TI layers, while hashed layers are
the ordinary-insulator spacers. The arrow in each TI layer shows
the magnetization direction. Only three periods of the superlat-
tice are shown in the figure; 20–30 unit cells can perhaps be
grown realistically.
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critical value (mc2), the two nondegenerate nodes meet and
annihilate at the center of the BZ kx ¼ ky ¼ kz ¼ 0, giving

rise to the fully gapped QAH insulator.
We will now show that the Weyl semimetal phase we

have found is characterized by a nonzero, but nonquan-
tized, anomalous Hall conductivity, proportional to the
magnitude of the separation of the Dirac nodes in momen-
tum space, thus smoothly evolving from zero in the
ordinary-insulator phase to e2=h per layer in the 3D
QAH insulator phase.

The fact that a 3DWeyl semimetal generally has a finite
Hall conductivity is known and was pointed out, e.g., in
Ref. [12]. For the particular realization of a Weyl semi-
metal, proposed in Ref. [2], the Hall conductivity vanishes
due to the cubic symmetry of the crystal structure of the
pyrochlore iridate materials. If the cubic symmetry is
broken, e.g., by applying a uniaxial pressure, as proposed
in Ref. [6], the Hall conductivity becomes nonzero and is
proportional, in the case discussed in Ref. [6], to the
applied pressure. In our case, there is a natural preferred
axis; i.e., the growth direction of the heterostructure (which
coincides with the magnetization direction) and the Hall
conductivity in the Weyl semimetal phase is automatically
nonzero. The simplest and most physically transparent way
to obtain this result is to view the 3D band structure as a set
of independent 2D band structures at fixed kz. We begin
with the momentum-space Hamiltonian:

H ðkÞ ¼ vF�
zðẑ� �Þ � kþm�z þ �̂ðkzÞ; (9)

where �̂ ¼ �S�
x þ 1

2 ð�D�
þeikzd þ H:c:Þ. This is simpli-

fied by the canonical transformation:

�� ! �z��; �� ! �z��: (10)

After this transformation, the Hamiltonian becomes

H ðkÞ ¼ vFky�
x � vFkx�

y þ ½mþ �̂ðkzÞ��z: (11)

Now �̂ is a constant of motion and may be replaced by

its eigenvalues �̂ðkzÞ ¼ ��ðkzÞ. For each of these cases,
Eq. (11) gives a 2D Dirac Hamiltonian for fixed kz, with a

mass M� ¼ m� �ðkzÞ. For m>mc1, M� vanishes when
kz ¼ �=d� k0, corresponding to the two Dirac nodes
(Mþ never vanishes).
It is well known that a change of sign of a 2D Dirac mass

signals a quantum Hall transition, at which the quantized
2D Hall conductivity �2D

xy jumps by e2=h [13]. The abso-

lute value of the Hall conductance is not determined by the
above continuum model. Therefore the contribution to the
total 3D Hall conductance of the states at fixed kz is equal
to �2D

xy ðkzÞ ¼ e2=h½nþ�ðk0 � jkz � �=djÞ�, where �ðxÞ
is the Heaviside step function and n is an integer. Since
when m vanishes TR symmetry demands that the Hall
conductivity must also vanish, we can conclude that n ¼ 0,
and hence

�xy ¼
Z �=d

��=d

dkz
2�

�2D
xy ðkzÞ ¼ e2k0

�h
: (12)

Thus the anomalous Hall conductivity in the Weyl semi-
metal is proportional to the separation of the Dirac nodes in
momentum space. For a multilayer, consisting of a finite
number of layers, as will be the case in the experiment, �xy

will exhibit plateaus as a function ofm, when k0 will fall in
an interval between the neighboring quantized kz values, as
shown in Fig. 3. At the upper critical value of m ¼ mc2,
2k0 ¼ 2�=d, the two Dirac nodes annihilate each other at
the center of the BZ, and the Hall conductivity reaches a
quantized value per TI layer:

�xy ¼ e2

dh
; (13)

which characterizes them>mc2 3D QAH insulator phase.
The results of Ref. [2] imply the existence of ‘‘Fermi

arcs’’ for the Weyl semimetal, in this case for any surface
except the one normal to the z axis. In fact, this arc is
nothing but the set of edge states corresponding to the 2D
integer quantum Hall states for �=d� k0 < jkzj<�=d.
These can be explicitly found from Eq. (11) for, e.g., the
case of a surface at y ¼ 0, modeled by a y-dependent spin-
splitting field mðyÞ. Outside the sample (y > 0) we take
mðy ! þ1Þ ¼ 0, which realizes an ordinary insulator,
while m>mc1 for y < 0, and consider the eigenstates for
fixed kx and kz. There are then special surface wave func-

tions with �̂ðkzÞ ¼ ��ðkzÞ, which are eigenstates of (11):

c surfðkx; kz; yÞ ¼ e
R

y

0
dy0½mðy0Þ��ðkzÞ�=vF j�y ¼ �1i: (14)

For �=d� k0 < jkzj<�=d and not otherwise, the expo-
nential above vanishes when y ! �1 and the state is
normalizable and localized to the surface with a localiza-
tion length �ðkzÞ � vF=M�ðkzÞ. The energy of this state is
simply �surf ¼ vFkx, indeed identifying it as a chiral edge
state. As m is increased to enter the QAH insulator phase,
the arc extends across the full BZ and then the surface
states can be alternatively viewed in a Wannier basis

FIG. 2 (color online). Phase diagrams for (a) m ¼ 0 and
(b) m � 0. In (a), the red line represents the phase boundary
between TI and ordinary insulator (Ins). In (b), due to TR
symmetry breaking, the distinction between topological and
ordinary insulators is moot, so the TI in (a) has been converted
to Ins. QAH denotes the quantum anomalous Hall phase.
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localized in individual TI layers, i.e., as conventional
quantum Hall edge states for each layer.

While the Weyl semimetal has topologically protected
edge states (topological protection follows from the sepa-
ration of the Dirac nodes in momentum space and from the
fact the edge states are chiral), it is actually not a Hall
insulator. At first sight, the low density of states gð�Þ � �2

seems to suggest a vanishing dc conductivity at zero
temperature [2]. However, a careful calculation reveals
that, in the presence of disorder but not interactions, this
is not the case. By using the standard Kubo formula
expression (or Boltzmann equation) with the Born-
approximation impurity scattering rate 1=�ð�Þ ¼ 2��gð�Þ,
where gð�Þ ¼ �2=2�2v3

F and � characterizes the strength
of the impurity potential, the optical conductivity of aWeyl
semimetal with isotropic Fermi velocity vF at temperature
T is given by

Re�ð!Þ�e2v2
F

h�

Z 1

�1
dx

x4sech2ðxÞ
x4þðh3v3

F!=32�2�T2Þ2 ; (15)

where we have restored explicit @ for clarity. This gives a
finite dc conductivity �DC � e2v2

F=h�, which can be ex-
pected to be large in a clean multilayer, but a Drude-like
peak in the optical conductivity with weight, vanishing as
T2. Thus with disorder (but neglecting interactions), the
Weyl semimetal is not an insulator but an unusual metal,
characterized by a nonzero anomalous Hall conductivity
and topologically protected edge states.

In conclusion, we have proposed a simple realization of
a 3D Weyl semimetal phase in a multilayer structure,
composed of a stack of thin layers of magnetically doped
3D TI material, separated by insulating spacers. We have
shown that this material realizes the simplest possible type
of Weyl semimetal, with only two Dirac nodes, separated
along the growth direction of the heterostructure in

momentum space. This Weyl semimetal is characterized
by a nonzero anomalous Hall conductivity, proportional to
the separation between the Dirac nodes, and by the exis-
tence of topologically stable chiral edge states. These edge
states are, however, distinct from the ordinary quantum
Hall edge states, since they exist not in the whole edge BZ
but in its finite subset, whose size is determined by the
momentum-space separation of the Dirac nodes. Finally,
we find that theWeyl semimetal has a finite dc conductivity
at zero temperature, but Drude weight vanishing as T2, and
is thus an interesting metallic state, characterized by a
nonzero anomalous Hall conductivity and topologically
protected edge states. Interesting open questions include
the influence of Coulomb interactions on the properties of
Weyl semimetals, in particular, their transport properties.
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FIG. 3 (color online). A plot of �xy in units of e2=hd for a
multilayer consisting of 30 TI layers. �D is taken to be equal to
0:8�S. The Hall conductivity is zero in the ordinary-insulator
phase (m<�S � �D) and reaches the maximum value of e2=hd
in the QAH phase (m>�S þ�D). Plateaus correspond to the
wave vector k0 being in an interval between the neighboring
finite-size-quantized kz values.
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