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We propose a systematical approach to construct generic fractional quantum anomalous Hall states,

which are generalizations of the fractional quantum Hall states to lattice models with zero net magnetic

field and full lattice translation symmetry. Local and translationally invariant Hamiltonians can also be

constructed, for which the proposed states are unique ground states. Our result demonstrates that generic

chiral topologically ordered states can be realized in lattice models, without requiring magnetic translation

symmetry and Landau level structure. We further generalize our approach to fractional topological

insulators, and provide the first explicit wave-function description of fractional topological insulators in

the absence of spin conservation.
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Introduction.—Topological states of matter are quantum
states which are distinguished from ordinary states by
topological properties, rather than more conventional prop-
erties such as symmetry. The first examples of topological
states of matter discovered in nature are the integer and
fractional quantum Hall states [1,2] which are realized in
two-dimensional electron gas systems in a strong perpen-
dicular magnetic field. The integer quantum Hall (IQH)
state is characterized by a Chern number of the geometrical
gauge field defined in the magnetic Brillouin zone [3] or
the parameter space of twisted boundary conditions [4,5],
which determines the integer n in the quantized Hall con-
ductance �xy ¼ ne2=h. In a work in 1988 [6], F. D. M.

Haldane proposed the first realization of the IQH state in a
band insulator model without net magnetic field. During
recent years, several semiconductor systems have been
proposed [7–9] which may realize such an IQH state
without Landau levels, named as the quantum anomalous
Hall (QAH) state.

Based on the understanding of QAH states, a natural
question is whether one can also find fractional quantum
anomalous Hall (FQAH) states, which are fractional quan-
tum Hall (FQH) states without Landau levels. Different
from IQH states, FQH states necessary require electron-
electron interaction, which makes the generalization to the
systems without Landau levels more difficult. In ordinary
FQH states the kinetic energy of electrons are quenched
due to the flat Landau levels, so that the electron interaction
effect can be significant and lead to topological nontrivial
states. By contrast, in a QAH system the energy dispersion
is in general not flat, so that if we consider the interaction
effect, there is competition between kinetic energy and
interaction energy which usually disfavors the topological
nontrivial states. Recently, specific QAH models with al-
most flat band dispersion and nontrivial Chern numbers
have been constructed [10–12]. Numerical evidences of
FQAH states have been found in such flat band models

when interaction is considered [11–14]. However, the
understanding of FQH states based on wave functions
such as the Laughlin wave function [15] cannot directly
apply to FQAH states, since the single-particle and many-
body wave functions in the QAH system are defined on
lattice and cannot be written as analytic functions.
In this Letter, we propose a systematical way to describe

the FQAH states by constructing model wave functions.
We show that one-dimensional maximally localized
Wannier functions can be defined in QAH states, which
plays the same role as that of the Landau level wave
functions in IQH and FQH states. Based on the Wannier
function basis, we construct the analogue of Laughlin wave
functions in FQAH, and also obtain the analogue of the
pseudopotential Hamiltonians [16,17] of which these wave
functions are exact ground states. Once such a one-to-one
mapping between Wannier functions in QAH and Landau
level wave functions in QH is defined, each wave function
constructed for the FQH has a counterpart as a FQAH. This
demonstrates that the physics of FQH does not rely on any
special property of the Landau level problem, such as the
wave functions being analytic functions, and the magnetic
translation symmetry. Instead, fractionalized topological
states exist generically in a flat (or nearly flat) band with
a nontrivial Chern number.
QAH states and one-dimensional Wannier functions.—

The QAH state is the ground state of a band insulator with
the Hamiltonian

H ¼ X
k

cykhðkÞck (1)

The single-particle Hamiltonian hðkÞ is a N � N
Hermitian matrix for a system with N bands. Denote the
eigenstates of the single-particle Hamiltonian hðkÞ as
jn;ki; n ¼ 1; 2; . . . ; N with eigenvalue En, the Hall con-
ductance of the system is determined by the first Chern
number [3] C1 ¼

R
d2kfxyðkÞ with fxyðkÞ ¼ @xay � @yax
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and aiðkÞ ¼ �i
P

En<0hn;kj@ijn;ki, i ¼ x, y. The QAH

state is described by a nontrivial Chern number. For a
system with C1 ¼ 0, the wave function of states jn;ki
can be taken as single-valued in the Brillouin zone, from
which one can construct the Wannier function basis by a
Fourier transform jWnxi ¼ 1ffiffiffiffiffiffiffiffi

LxLy

p P
k;me

ik�xUnmðkÞjm;ki
with UnmðkÞ some smooth unitary transformation. By
contrast, for QAH states with C1 � 0, it is well-known
that Wannier function localized along both x and y
directions cannot be defined since the wave function
cannot be taken as single-valued through the Brillouin
zone [18,19]. Instead, one-dimensional (1D) Wannier
functions can be defined which are eigenstates of ky and

are maximally localized along x direction [20–22]. For
each fixed ky, all states with momentum ky form a one-

dimensional subsystem with the Hamiltonian H1DðkyÞ ¼P
kx
cykxkyhðkx; kyÞckxky . For one-dimensional systems there

is no obstruction in getting localized Wannier function.
Maximally localized Wannier functions can be obtained
as eigenstates of the projected position operator X ¼
P�xP� with x the x-direction coordinate operator and
P� the projection to occupied bands [23].

For simplicity, we consider a QAH system with only one
occupied band denoted by jkx; kyi. The Berry’s phase

gauge field is ai ¼ �ihkx; kyj@ijkx; kyi with i ¼ x, y. One

can always make a gauge choice ay ¼ 0, in which case

the explicit form of the maximally localized Wannier
function is

jWðky; xÞi
¼ L�1=2

x

X
kx

e�i
R

kx
0
axðpx;kyÞdpx � e�ikxðx�½�ðkyÞ�=2�Þjkx; kyi (2)

with �ðkyÞ ¼
R
2�
0 axðpx; kyÞdpx. x 2 Z labels the lattice

sites. The phase factor with ei�ðkyÞkx=2� guarantees that the
Bloch function is periodic for kx ! kx þ 2�. Under

the gauge transformation jkx; kyi ! ei’ðkx;kyÞjkx; kyi, the

Wannier function is gauge invariant up to an overall phase:

jWðky; xÞi ! ei’ð0;kyÞjWðky; xÞi. It can be verified directly

that the center-of-mass position of the Wannier function
jWðky; xÞi is given by

hx̂i ¼ hWðky; xÞjx̂jWðky; xÞi ¼ x� �ðkyÞ=2�;
so that �ðkyÞ=2� is the shift of the Wannier function away

from the lattice site, i. e. the charge polarization [24].
Since the polarization �ðkyÞ is determined by the Wilson

loop of the Berry’s phase gauge field, the Chern number in
the Brillouin zone corresponds to the winding number of
�ðkyÞ, i.e., C1 ¼ � 1

2�

R
2�
0 d�ðkyÞ [25]. For nontrivial C1,

the Wannier function jWðky; xÞi is not periodic in ky, since

its center-of-mass position shifts by C1 when ky is tuned

continuously from 0 to 2�. In other words, the Wannier
functions satisfy the following twisted boundary condition:

jWðky þ 2�; xÞi ¼ jWðky; xþ C1Þi (3)

As an example, we consider the lattice Dirac model [7,26]
which is a two-band model with the Hamiltonian

hðkÞ ¼ X
a¼1;2;3

daðkÞ�a (4)

with ðd1; d2; d3ÞðkÞ ¼ ð sinkx; sinky;Mþ 2Bð2� coskx�
coskyÞÞ. For B> 0 and �2<M=2B< 0, the system has

Chern number C1 ¼ 1. The center-of-mass position of the
Wannier functions can be obtained numerically as shown
in Fig. 1(a), which shows the shift of Wannier function
position under ky ! ky þ 2�. As a consequence of this

shift, one can see intuitively from Fig. 1(a) that all Wannier
functions jWðky; xÞi can be parameterized by one real

parameter. If we define Ky ¼ ky þ 2�x for ky 2 ½0; 2�Þ,
then

jWKy¼kyþ2�xi � jWðky; xÞi (5)

is continuous in Ky 2 R. The center-of-mass position of

jWKy
i versus Ky is shown in Fig. 1(b). In this notion one

can see clearly that the Wannier functions labeled by Ky

are analogous to the lowest Landau level wave functions of
the ordinary QH state in the Landau gauge in the form of

c Ky
ðx; yÞ ¼ ð�l2BL2

yÞ�1=4eiKyy�ðx�Kyl
2
BÞ2=2l2B , which are also

eigenstates of ky and localized in x direction. Actually, the

Wannier functions jWKy
i reduces exactly to the Landau

level wave functions if we apply this formalism to the
Hofstadter model [27] and take the limit of small magnetic
field lB � 1.
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FIG. 1 (color online). (a) The center-of-mass position hx̂i of
the Wannier functions versus ky. (b) hx̂i versus the extended

wavevector Ky defined in Eq. (5). (c) The profile of a Wannier

function. (d) The profile of the coherent state wave function
defined in Eq. (9). All the results are calculated for the two-band
model (4) with the parameters M ¼ �1, B ¼ 1=2 on a 50� 50
lattice.
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Although the definition of jWKy
i seems to be simply

relabeling the Wannier functions, it plays a key role in
understanding the QH and QAH states on equal footing.
Once the analog of Landau level wave functions jWKy

i is
found, all many-body wave functions of FQH states can
now find an analog in FQAH states.

Laughlin states and pseudopotential Hamiltonians.—
The FQAH analog of Laughlin states in FQH can be
constructed by using the basis jWKy

i to replace the

Landau gauge wave functions in the Landau level problem.
The Laughlin wave function on a cylinder is given by [28]

�1=mfxi; yig ¼ �
Y
i<j

ðe2�zi=Ly � e2�zj=LyÞme
�P

i

x2i =2l
2
B

with � a normalization factor, and zi ¼ xi þ iyi. If we
define the wave function in occupation number basis as

�ðfnigÞ ¼ 1

LN
y

Z Y
i

dxidyic
�
2�ni=Ly

ðxi; yiÞ�1=mfxi; yig

(6)

with c Ky
ðx; yÞ the Landau level wave function in Landau

gauge mentioned earlier, the FQAH version of the
Laughlin state can be defined as

j1=mi ¼ X
fnig

�ðfnigÞ
Y
i

jW2�ni=Ly
i (7)

It is straightforward to verify that such a state is invariant
under the lattice translation symmetry. In the occupation
number basis, the wave function is the same as that of the
Laughlin state, so that one can also define the FQAH
version of the pseudopotential Hamiltonian [16,17], for
which the state j1=mi is a unique ground state. For ex-
ample, for the � ¼ 1=3 Laughlin state the pseudopotential
Hamiltonian can be written in the following second-
quantized form [28,29]:

H ¼ U
X
n2Z

bynbn with

bn ¼
X

l2Z;n�leven

�
l

2
e��l2=2L2

y

�
cðn�lÞ=2cðnþlÞ=2 (8)

in which cn is the annihilation operator of the single-

particle state jWKy¼2�n=Ly
i. In other words, cyn j�i ¼

jW2�n=Ly
i with j�i the vacuum. The state j1=3i satisfies

bnj1=3i ¼ 0, which is thus the ground state of H
(for U > 0).

It is essential to show that the Hamiltonian (8) is indeed
a local Hamiltonian of the 2d lattice system. On this
purpose it is convenient to consider the coherent states

jzi ¼ X
n2Z

e�ið2�Þ=ðLyÞnz2��ðz1�n=ðLyÞÞ2 jW2�n=Ly
i (9)

with z ¼ z1 þ iz2 a complex variable and z1, z2 the real
and imaginary parts. The coherent state jzi is periodic in

z ! zþ iLy which shows that the variable z is defined on

the cylinder. The coherent state is a superposition of Ky

eigenstates jWKy
i around Ky ¼ 2�n=Ly ’ 2�z1, with the

width of the distribution �Ky ’ 2
ffiffiffiffi
�

p
. Since the x position

is proportional to Ky as x ’ Ky=2�, one can see that the

coherent state is local (in the sense of exponential decay) in
both x and y directions. For the two-band Hamiltonian (4),
the coherent state wave function is shown in Fig. 1(d).
The annihilation operator of the coherent state can be

defined as

cðzÞ ¼ X
n2Z

eið2�Þ=ðLyÞnz2��ðz1�n=ðLyÞÞ2cn (10)

Since the coherent state wave function is local, cðzÞ is a
local operator which is a superposition of the real space
annihilation operators ci around the center-of-mass posi-
tion (z1, z2). The Hamiltonian (8) can be written in cðzÞ as

H ¼ ULy

4�2

Z
dz1dz2b

yðzÞ � bðzÞ;
bðzÞ ¼ cðzÞð�irÞcðzÞ

Since cðzÞ and bðzÞ are local operators in the 2d lattice
model, so is H.
Construction of more generic wave functions.—The ap-

proach discussed above can be easily generalized to obtain
more general FQAH states, such as the Moore-Read state
[30] with non-Abelian quasiparticles. In general, any FQH
state that can be written in the occupation number basis on
the cylinder geometry has an analog in the FQAH system.
If the FQH state is an exact ground state of some
Hamiltonian, a similar Hamiltonian can be obtained for
the FQAH state by using occupation number basis and/or
coherent states. (For a different construction of wave func-
tions and Hamiltonians of lattice chiral topological states,
see, e.g., Ref. [31].) For example, in Ref. [32] a large class
of FQH states have been constructed by using Jack poly-
nomials. For such states the wave function in occupation
number basis is recursively known, so that the general-
ization to FQAH states can be done straightforwardly.
Similarly, other approaches of obtaining wave functions
in FQH system (e.g., Refs. [33–35]) can also be general-
ized to FQAH system. Our result provides a systematical
approach to obtain two-dimensional chiral topological
states on a lattice model with full lattice translation sym-
metry and a small number of single-particle states per unit
cell. (On comparison, the ordinary FQH states can be
considered as the FQAH states in a Hofstadter model in
the continuum limit lB � a with a the lattice constant and
lB the magnetic length. In this limit the number of states
per magnetic unit cell is diverging / l2B=a

2.) Our approach
can also be further generalized to more generic QAH states
with Chern number C1 > 1, and/or multiple occupied
bands.
Generalization to fractional topological insulators.—

The approach of Wannier functions can also be further
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generalized beyond FQH states. In recent years, topological
insulators (TI) have been proposed and experimentally
realized, which can be considered as the generalization of
QH states in time-reversal invariant systems [36]. In two
dimensions, TI can also be generalized to fractional TI
[37,38], which are fractionalized topological states pro-
tected by time-reversal symmetry. The simplest model
for fractional TI consists of two decoupled FQH states,
formed by spin up and down electrons, with opposite Hall
conductance. For example, for the Laughlin state the cor-
responding fractional TI state is jFTIi ¼ j1=m; "i�
j � 1=m; #i. More generally, the spin Sz conservation can
be broken by spin-orbit coupling, and the TI and fractional
TI states remain stable as long as time-reversal symmetry is
preserved [38,39]. However, in the wave function approach
it is difficult to construct a fractional TI wave function for a
system without spin conservation, since the wave function
of spin up (down) electrons in the spin-conserved case are
holomorphic (antiholomorphic) functions, and it is difficult
to introduce a translation invariant coupling between them.
The Wannier function approach provides a natural way to
construct a fractional TI wave function for a generic
Hamiltonian without spin conservation.

On this purpose we generalize the expression of maxi-
mally localized Wannier functions in Eq. (2) to a system
with N occupied bands [22]:

jWiðky; xÞi ¼ 1ffiffiffiffiffiffi
Lx

p X
kx;m;n

e�ikxðx�½�iðkyÞ�=2�Þuim

� ½Pe�i
R

kx

0
axðpx;kyÞdpx�nmjn; kx; kyi (11)

with ei�nðkyÞ, i ¼ 1; 2; . . . ; N the eigenvalues of the Wilson

loop operator ½Pe�i
R

2�

0
axðpx;kyÞdpx� and uim the correspond-

ing eigenstates. ax is the UðNÞ Berry’s phase gauge field
defined by axðpx; kyÞnm ¼ �ihn; px; kyj @

@px
jm;px; kyi.

Similar to the one-band case, the center-of-mass position
of the Wannier function jWiðky; xÞi is given by hx̂i ¼
x� �iðkyÞ=2�. For a TI with a nontrivial Z2 invariant

[39] in the occupied bands, the center-of-mass positions
of the Wannier functions are doubly degenerate at time-
reversal invariant wave vectors ky ¼ 0, �, and there are

two subgroups of Wannier functions with opposite odd
winding number in the evolution of ky from 0 to 2�

[21,22]. As an example, we consider the Bernevig-
Hughes-Zhang (BHZ) model for HgTe topological insula-
tor [40] and also include the bulk-inversion-asymmetry
term [41] such that the model is sufficiently generic and
has no spin conservation. The lattice Hamiltonian can be
written as

hðkÞ ¼ ðMþ 2Bð2� coskx � coskyÞÞ1 � �z

þ sinkx�z � �x þ sinky1 � �y þ ��y � �y (12)

in which �a, �a are Pauli matrices in spin and orbital
indices, respectively, and the time-reversal transformation
is defined as T ¼ i�yK with K the complex conjugation.

The Wannier functions can be obtained for this model, as
shown in Fig. 2(a). In the TI phase the two Wannier
functions wind around the ky circle to opposite directions.

Similar to Eq. (5), we can extend the definition of ky by

continuity, and define the Wannier functions jW1;2
Ky
i ¼

jW1;2ðky; x1;2Þi, with Ky ¼ ky 	 2�x1;2 for i ¼ 1, 2, re-

spectively. The center-of-mass of these relabeled Wannier
functions are shown in Fig. 2(b). The important property of
this Wannier function basis is that the occupied states are
decoupled to two bands of Wannier states, each of which
has the winding property as the Wannier states of a QAH
system (with opposite winding direction), even though the
Hamiltonian does not preserve any spin conservation. By

using the Wannier functions jW1;2
Ky
i we can construct wave

functions for fractional TI in the form of jFQAH1i �
jFQAH2i, which are direct product of FQAH state
jFQAH1i formed by jW1

Ky
i and the time-reversed state

jFQAH2i formed by jW2
Ky
i. Although it appears to be a

direct product state of two FQAH states, in the physical
spin basis, spin up and down electrons are entangled and
the state cannot be written as a direct product state. When a
time-reversal invariant perturbation is considered (such as
changing the term � in the Hamiltonian (12)), the effect on
the ansatz wave function can be described since the single-

particle Wannier states jW1;2
Ky
i depends on the perturbation.

Thus we see that through the Wannier function approach
one can obtain generic wave functions for fractional TI’s
without spin conservation.
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