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We apply continuum mechanical based, numerical modeling to study the dynamics of extended

monodisperse polymer melts during the relaxation. The computations are within the ideas of the

microstructural ‘‘interchain pressure’’ theory. The computations show a delayed necking resulting in a

rupture, as a result of small initial sample imperfections. These ruptures agree with experimental

observations.
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There have been remarkable advances in the understand-
ing of polymer dynamics over the past few years [1–6], all
based on tube models. This is a result of the appearance of
new experimental techniques [7,8]. Still a lot of observa-
tions are unresolved. Particularly, the phenomenon of spon-
taneous ruptures in monodisperse polymer melts remains
mysterious. The ruptures appear as developments of holes
in thin films [9] or the delayed breakup of extended polymer
melts [10,11]. These subjects have been discussed in a large
number of scientific papers but are still unresolved. It has
been argued that the spontaneous rupture in extended poly-
mer melts is in contradiction with the idea behind the tube
model [10]. However, it has been shown by numerical
modeling that a tube model can show a delayed necking
[12], which may be an initiation of a spontaneous breakup.

We will focus on the dynamics and breakup of mono-
disperse styrenebutadiene (SBR) polymer melts, as in the
experimental studies by Wang and co-workers [10,11].
Wang and co-workers [10,11] extended cylindrical-shaped
SBR samples on a Sentmanat extension rheometer (SER)
fixture [8]. At a given strain, the rotation of the cylinders
was interrupted. As the stress relaxed, the dynamics and
potential breakup of the samples were recorded. Our pur-
pose is to study whether the published experiments can be
explained within the framework of recent theoretical
understandings of polymer dynamics.

We will use the recent constitutive equation by Wagner
et al. [2,13] based on the ‘‘interchain pressure’’ concept
[1]. This approach can describe homogeneous flow behav-
ior of monodisperse polymer melts accurately. The ana-
lytical (e.g., constitutive) model is
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and fðt0; t0Þ ¼ 1: (2)

�R is the Rouse time and Mðt� t0Þ the memory function
containing the linear dynamics of the polymer. �ij are the

components of the stress tensor. f is referred to as the
molecular stress function. The angular brackets denote an
average over a unit sphere h� � �i ¼ 1=ð4�ÞRjuj¼1 . . . du. u

is a unit vector. The components of the displacement
gradient tensor E are given by Eijðx; t; t0Þ ¼ @xi=@x

0
j,

i ¼ 1; 2; 3 and j ¼ 1; 2; 3. ðx01; x02; x03Þ is the Cartesian co-

ordinates of a given particle in the stress-free reference
state (time t0), displaced to coordinates ðx1; x2; x3Þ in the
current state (time t).
We will apply the method by Baumgaertel,

Schausberger, and Winter [14] to describe the linear dy-
namics. The memory function is
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omitting the glassy part. �max is the maximal relaxation
time in a continuous distribution of the time constant. Both
ne and G0

N (the plateau modulus) have a unique value for
each type of polymer. We will use the values obtained by
Lyhne et al. [12], fitted for the 100 K SBR melt, for all the
involved SBR melts. These are given in Table I. This table
also contains the terminal relaxation time �s at room
temperature for the different SBR melts, as determined
by Wang and co-workers [10]. The terminal relaxation
time is defined as the reciprocal of the crossover frequency,
e.g., the angular frequency where the storage and loss
moduli are equal in linear viscoelastic measurements. For
all the SBR melts the ratio �max=�s will be a fixed value as
the number of entanglementsN in the melts are sufficiently
high. Lyhne et al. determined one �max value for the 100 K
SBR melt. Therefore, the remaining �max values can be
calculated from the �max=�s ratio.

TABLE I. SBR melt parameters at room temperature.

Name G0
N ne �s �max �R

100 K 0.652 MPa 0.261 25 s 57.95 s 1.34 s

170 K 0.652 MPa 0.261 120 s 278.2 s 4.07 s

250 K 0.652 MPa 0.261 310 s 718.6 s 7.95 s

500 K 0.652 MPa 0.261 2100 s 4868 s 30.7 s
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The determination of the Rouse time highly depends on
the used definition. In most definitions the Rouse time
(relative to the terminal or the maximal relaxation time)
is solely dependent on the number of entanglements of the
polymer as �R=�s / 1=N. The 100 K SBR melt was re-
ported [10] to have 24 entanglements. A value of
3�R=�max ¼ 0:069 62 has been obtained for a polystyrene
with 24 entanglements [7], based on startup of extension
viscosities ( ��þ). The startup of the nominal extension
viscosities ( ��þ

N ) for the 100 K SBR melt is shown in
Fig. 1 measured by [11] using a SER fixture [8]. The
measured nominal viscosities agree well with the theoreti-
cal expectations, using the value of 3�R=�max ¼ 0:069 62
in Eq. (2), as seen in Fig. 1.

Using the SER fixture, it is important to distinguish
between the real strain (�), as well as viscosities ( ��þ),
and the nominal ones (�N and ��þ

N , respectively). The real
kinematic strain is defined as �ðtÞ ¼ ln½lðtÞ=lð0Þ�, where
lðtÞ and lðt ¼ 0Þ are the axial distances between two par-
ticles, theoretically separated by an infinitesimal distance,
in the direction of the (axial) extension. t is the time from
the start of the extension at t ¼ 0. The real strain (�) in the
SER fixture is about 10% (� 3%) lower than the reported
set strain (�N) [15], if a cylindrical sample with a radius of
R ¼ 1 mm is applied, as in [10,11]. It is important to
notice that we use the relation � ¼ 0:9�N in all our theo-
retical computations. For the corresponding strain rates
_� ¼ 0:9 _�N , where � ¼ _�t. The nominal extension viscos-
ities are defined as ��þ

N ¼ F=½ _�NA0 expð��NÞ�, where F is
the axial (or extensional) force and A0 the initial cross
sectional area of the sample.

We apply the well-established relation �s / N3:4 [16], in
the determination of the Rouse time for the remaining SBR
melts. Removing the entanglement dependency using

�R=�s / 1=N, we obtain the relation �R / ð�sÞ2:4=3:4 or

�R / ð�maxÞ2:4=3:4. Therefore, the remaining Rouse times
(�R) will be calculated from this relation, and these values
are given in Table I as well.
All the experiments byWang and co-workers [10,11] are

performed on a SER fixture [8]. The SER fixture consists
of two cylindrical drums. A circular cylinder with an initial
radius of R is attached onto these drums. L0 is the length of
the unsupported part of the sample in a SER fixture.
Initially the sample is stress-free and at rest. At time
t ¼ 0 the drums start the rotation. A constant set or nomi-
nal extension rate ( _�N) is imposed on the sample, as the
extension is achieved by counterrotating the drums with
the same and constant angular rate. The rotation is halted at
a set strain of �N;0 and real strain �0, from whence the

dynamics of the extended sample can be observed.
Computationally, this extension is modeled in axisym-

metry with radial and axial coordinates (r; z). We consider
a cylinder of initial length Lðt ¼ 0Þ ¼ L0 expð��0Þ and
radius R. The cylinder is extended with a constant strain
rate ( _�) as LðtÞ ¼ L0 expð _�t� �0Þ until L ¼ L0, where the
length L is kept constant. As L0 ¼ 12:7 mm [8] the ratio
L0=R ¼ 12:7 in all computations. The length of the sample
now corresponds to the length of the unsupported part of
the sample in the SER fixture, and the dynamics of the
sample can be followed computationally during its relaxa-
tion. This method ensures a reasonable numerical match of
the real experimental conditions. Computationally we will
use a geometry containing two planes of symmetry at the
ends of the cylinder (z ¼ �L=2) and at the center of the
sample (z ¼ 0). This allows a reduction in the computa-
tional domain to the area between z ¼ 0 and z ¼ L=2,
where z is the axial coordinate. This is the area contained
between the dashed lines in Fig. 2. No surface tension,
stress, or pressure is exerted on the free surface. We utilize
the Lagrangian kinematic (e.g., particle) description from
the used constitutive equation, where the numerical finite
element method from Rasmussen [17] is applied. Notice
that we apply the Currie approximation [18] in all our finite
element computations, for the terms in the angular brackets
in the constitutive equations (1) and (2).
The spontaneous breakup of extended monodisperse

polymer melts would be considered an instability in a
traditional continuum mechanical framework. It may be
more descriptive to refer to it as a sensitivity to the initial
conditions. Even minute differences from an ideal circular
cylinder are bound to exist on the samples. Computationally
the deviation from the ideal cylinder is positioned at the
center of the sample, e.g., at z ¼ 0, although the observed
break does not seem to occur at any particular place on the
sample [10,11]. Here, the perturbation is realized as an
axisymmetric sinusoidal-shaped suppression in the surface

FIG. 1. The startup of nominal extension viscosities ��þ
N as

function of the time t. t is the time from the start of the extension
(at t ¼ 0). The bullets (d) are measurements from Fig. 7 in [11].
The set extensional rates _�N are 24, 16, 11, 8, 6.4, 4.8, 3.2, 1.6,
0.8, and 0:4 s�1 from the left to the right curve. The solid lines
are the corresponding theoretical prediction from Eqs. (1) and
(2), with the use of the parameters in Table I for the 100 K SBR
melt. The dashed line is the linear viscoelastic envelope.
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with heightH and a (total) width of 2W (illustrated in Fig. 2)
in the initial (t ¼ 0) computational geometry. The evolution
of an extension followed by relaxation is shown in Fig. 2.
The sequence in Fig. 2 shows a numerically simulated
sample extension, followed by the dynamics in the sample
during the relaxation phase. A clear necking phase occurs
during the relaxation.

A series of simulations has been performed for different
imposed strains for the 100 K SBR melt. We have used a
fixed initial perturbation height of H=R ¼ 0:015 and a
width of W=R ¼ 0:2. The engineering stress F=A0 is
shown in Fig. 3 for the extension of the 100 K SBR melt.

Our computations are shown together with the data from
Wang and co-workers [11], originating from their Fig. 6.
The necking occurs simultaneously with the sudden drop in
the engineering stress and eventually evolves into a break.
Although any initial imperfections of the samples will
never be exactly the same in experiments, the computa-
tions show a remarkable agreement with the observations.
Similarly, a series of simulations (solid lines) has been

performed for the different SBR melts, 170, 250, and
500 K, for a fixed imposed strain. Here we have used a
fixed initial perturbation height ofH=R ¼ 0:05 and a width
of W=R ¼ 0:2. Again, a remarkable agreement with the
experimental data from Wang and co-workers [10] (origi-
nating from their Fig. 5) is observed in Fig. 4. For com-
parison we have also included the engineering stress for an
ideal cylinder as the dashed lines. The sudden drop in the
engineering stress is a result of the necking, initiating from
the sample imperfection.
According to the hydrodynamic definition, a break is

where a cross sectional area goes to zero in finite time.
Numerical (finite element) modeling is not capable of
finding this limit exactly. But in the computations in
Figs. 3 and 4, and particularly in Fig. 2, the areas tend to
go to zero in finite time for the computations showing a
necking. To obtain an unambiguous measure of the occur-
rence of a break, we will define it as follows: the break
happens if a linear extrapolation of the (smallest) cross
sectional area of the sample A versus the time t will reach

FIG. 2. The solid lines are the dynamic development of the
boundary contours in the finite element modeling (of a 100 K
SBR melt). L0=R ¼ 12:7. The dashed lines are symmetry lines.
The startup of flow, until a set strain of �N;0 (here �N;0 ¼ 1:4)
using a set extension rate of _�N (here _�N ¼ 9:6 s�1), is shown. It
is following by the dynamic development of the boundaries,
where the distance between the left and right boundaries is fixed.
An initial perturbation of the cylindrical sample ofH=R ¼ 0:015
and a width of W=R ¼ 0:2 is used in these finite element
computations.

FIG. 3. The engineering stress F=A0 as a function of the time
from the initiation of the extension (t ¼ 0) for the 100 K SBR
melt. The initial imposed set strain �N;0 is 1.8 (4), 1.6 (e),

1.4 (�), and 1.2 (þ ), where the nominal extension rate
_�N ¼ 9:6 s�1. The measurements are from Fig. 6 in [11]. The
solid lines are the corresponding finite element computations to
the symbols. They are based on Eqs. (1) and (2) (using the Currie
approximation), with the parameters in Table I for the 100 K
SBR melt. A fixed initial perturbation of the cylindrical sample
height of H=R ¼ 0:015 and a width of W=R ¼ 0:2 is used in the
finite element computations.

FIG. 4. The engineering stress F=A0 as a function of the time
from the initiation of the extension (t ¼ 0). The 170 (e),
250 (�), and 500 K (þ ) SBR melts are represented in the
left to the right curves, respectively. The initial imposed set
strain rates _�N are 4.8 (e), 2.6 (�), and 0:8 s�1 (þ ) for the
170 (e), 250 (�), and 500 K (þ ) SBR melts, respectively.
The initial imposed set strain �N;0 ¼ 1:1. The solid lines are the

corresponding finite element computations to the symbols. They
are based on Eqs. (1) and (2) (using the Currie approximation),
with the parameters in Table I for the respective SBR melts. A
fixed initial perturbation of the cylindrical sample height of
H=R ¼ 0:05 and a width of W=R ¼ 0:2 is used in the finite
element computations.
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zero during a sufficiently small change in time. It may be
written as the time tc ¼ t, where Adt=dA < �t, where �
is sufficiently small. Here we will use a � value of 0.03;
e.g., the actual break is expected to occur less than 3% later
in time.

Figure 5 shows the time of the break (tc) relative to the
Rouse time (�R) as a function of imposed set strain ( _�N;0).

The symbols are the experimentally obtained break for
all the involved SBR melts (from Fig. 5 and in [10], as
well as Fig. 6 in [11]). The lines are the calculated break
for the 100 K SBR (dashed lines) and 250 K SBR (solid
lines) melts. The necking is a consequence of the relaxa-
tion of the molecular stress function, controlled by the
Rouse time. Therefore, the necking and subsequent time
of the break, relative to the Rouse time, are not very
sensitive to the change of molecular weight. An exception
occurs at low imposed strains. Here the transition from
viscoelastic to viscous behavior, controlled by the relaxa-
tion time, stabilizes the sample. It is of interest to notice
that the theoretical ideal lower limit for the occurrence of
the necking, the elastic Considere criteria, is at a real
strain of �0 ¼ 0:86 [19], corresponding to a set strain of
_�N;0 ¼ 0:96. Both the experiments and the computations

show the break much earlier than this, as a consequence of
the nonideal conditions.

Geometrically, we have only changed the sample height
H=R, as the computations are relatively insensitive to the
width W=R of the disturbance. The computations show
slopes similar to the experimentally observed breaks for
the individual SBR melts, even though the consequence of
changing the height of the disturbance is severe. In order to
do a comparison between each of the individual experi-
ments, information concerning the initial surface conditions
needs to bemonitored. This allows us to follow the temporal
development of the surface from well-defined initial con-
ditions both experimentally and with simulations.
Small initial deviations from a perfect cylindrical sam-

ple can result in delayed necking phenomena as observed
during the relaxation of extended monodisperse polymer
samples. These observed necking phenomena, resulting in
a rupture, can be explained accurately within classical
continuum mechanical instability theory. Here it is based
on a continuum mechanical constitutive model for the
fluid, within the ideas of the microstructural ‘‘interchain
pressure’’ theory.
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FIG. 5. Time to break tc relative to the Rouse time �R (from
Table I) as function of the set strain where the rotation is halted
�N;0. The measurements are from Fig. 5 in [10] and Fig. 6 in

[11]. The initial imposed set strain rates _�N are 9.6 (4), 4.8 (e),
2.6 (�), and 0:8 s�1 (þ ) for the 100 (4), 170 (e), 250 (�), and
500 K (þ ) SBR melts, respectively. The lines are the finite
element computations, based on Eqs. (1) and (2) (using the
Currie approximation), with the parameters in Table I for the
respective SBR melts. The dashed lines are finite element
computations for the 100 K SBR melt and the solid lines for
the 250 K SBR melt. A fixed initial perturbation of the cylin-
drical sample height of H=R ¼ 0:05 and a width of W=R ¼ 0:2
is used in the computations for the two lines to the left, where
H=R ¼ 0:015 (the width is unchanged W=R ¼ 0:2) for the two
lines to the right.
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