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Phase Diagram and Structural Diversity of the Densest Binary Sphere Packings

Adam B. Hopkins,' Yang Jiao,” Frank H. Stillinger,' and Salvatore Torquato

1,2,3,4,5

'Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
*Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
*Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
“Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA

>Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
(Received 22 June 2011; published 13 September 2011)

The densest binary sphere packings have historically been very difficult to determine. The only
rigorously known packings in the a-x plane of sphere radius ratio « and relative concentration x are at
the Kepler limit & = 1, where packings are monodisperse. Utilizing an implementation of the Torquato-
Jiao sphere-packing algorithm [S. Torquato and Y. Jiao, Phys. Rev. E 82, 061302 (2010)], we present the
most comprehensive determination to date of the phase diagram in (e, x) for the densest binary sphere
packings. Unexpectedly, we find many distinct new densest packings.
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A packing is defined as a set of nonoverlapping objects
arranged in a space of dimension d, and its packing fraction
¢ is the fraction of space that the objects cover. Packings of
spheres can be used to describe the structures and some
fundamental properties of a diverse range of substances
from crystals and colloids to liquids, amorphous solids, and
glasses [1-3]. In particular, the densest sphere packings in
d-dimensional Euclidean space R?, or packings with maxi-
mal packing fraction ¢,,,, often correspond to ground
states of systems of particles with pairwise interactions
dominated by steep isotropic repulsion [4-7]. Recently,
packings of different sized spheres in R* have been em-
ployed to model the structures of a range of materials,
including, for example, solid propellants and concrete
[8,9]. The focus of the present Letter is binary sphere
packings, packings of spheres of two sizes, which have
long been used as models for the structures of a wide range
of alloys [5,10-12].

Past efforts to identify the densest binary sphere packings
have employed simple crystallographic techniques [13,14]
and algorithmic methods, e.g., Monte Carlo calculations
and a genetic algorithm [15,16]. However, these methods
have achieved only limited success, in part due to the very
large parameter space in («, x) of binary packings, where
a« = Rs/R; and x = MNTSN with Rg, Ny and R, N, the
respective radii and numbers of the small and large spheres
in the packing, and where, in the infinite volume limit
Ng + N; — o0, x remains constant. When employing tradi-
tional algorithms, difficulties result from the enormous
number of steps required to escape from local minima in
“energy,” defined as the negative of the packing fraction.

In this work, we present the most comprehensive deter-
mination to date of the phase diagram for the densest
infinite binary sphere packings. Employing an algorithmic
search using an implementation of the Torquato-Jiao (TJ)
linear-programming algorithm [17], we identify 17 distinct
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alloys, including seven that were heretofore unknown,
present in the densest packings over a range of (a, x) where
significantly fewer were thought to be found. Previously,
the alloys thought to be present for a > V2—-1=
0.414213 ... corresponded to structures such as the AlB,
(hexagonal w), HgBr,, and AuTe, structures [14,16,18]
and to two structures composed of equal numbers of small
and large spheres [19]. For o = V2 — 1, the alloys thought
to be present were XY, structures of close-packed large
spheres with small spheres (in a ratio of n to 1) in the
interstices, e.g., the NaCl packing for n = 1. Using the TJ
algorithm, we always identify either the densest previously
known alloy or one that is denser.

The finding that such a broad array of different densest
stable structures consisting of only two types of compo-
nents can form without any consideration of attractive or
anisotropic interactions is of significant practical impor-
tance. Our findings strongly suggest that the wide variety of
atomic, molecular, colloidal, and granular structures may
owe much of their structural diversity to entropic (free-
volume maximizing) interactions rather than only to an-
isotropies in nearest-neighbor bonding.

Structures, or configurations of points, can be classified
as either periodic or aperiodic. Roughly defined, a periodic
structure (packing) is one consisting of a certain number of
points (sphere centers), called the basis, placed in a defined
region of space, the fundamental cell, replicated many
times such that the cells cover all space without any over-
lap between cells (or spheres). If a fundamental cell has a
minimal basis, then a smaller cell and basis of the same
periodic structure does not exist. An aperiodic structure has
an infinite minimal basis. We use the term “alloy” in a
general sense to mean a structure composed of two or more
distinguishable components that are not phase-separated.

The problem of generating dense packings of non-
overlapping nonspherical particles within an adaptive
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fundamental cell subject to periodic boundary conditions
has been posed as an optimization problem called the
adaptive-shrinking cell scheme [20]. The TJ sphere-
packing algorithm [17] is a linear-programming solution
of the adaptive-shrinking cell scheme for the special case
of packings of spheres with a size distribution for which
linearization of the design variables, including the periodic
simulation box shape and size, and impenetrability con-
straints, is exact. The TJ algorithm leads to strictly jammed
packings of spheres with variable degrees of order, includ-
ing the maximally dense packings. In a strictly jammed
packing, no volume-decreasing deformation of the funda-
mental cell or any internal collective particle motions are
possible. Consequently, maximally dense periodic pack-
ings must also be strictly jammed because otherwise the
volume of the packing could be reduced [21].

Using the TJ algorithm, we have systematically sur-
veyed the parameter space (a, x) € [0, 1] X [0, 1], omit-
ting the rectangular area o < 0.2, x > 11/12 for reasons
mentioned below, to find the putative densest binary pack-
ings for bases of up to 12 spheres. From this survey,
we construct the most comprehensive determination to
date of the phase diagram of the densest infinite binary
packings and the best-known lower bound on the function
dmax(@, x), the packing fraction of the densest infinite
packings of binary spheres at fixed («, x) for the values
of a in our survey; see Fig. 1. We present a detailed view of
the composition of phases in Fig. 2.

Away from the point (a, x) = (0, 1), assuming that the
packing fraction and composition of the generally small
number of densest alloys at specified radius ratio « are
known, the densest infinite packings are phase-separated
combinations of alloy and/or monodisperse phases. The
spheres in the monodisperse phases are packed as any of
the uncountably infinite number of Barlow packings [22],
e.g., the well known fcc and hep close-packed packings.

FIG. 1 (color online).

The most comprehensive determi-
nation to date of the phase diagram and maximal packing
fraction surface ¢ . (c, x) of the densest infinite binary sphere
packings. The highest point is ¢,,x(0.224744 ...,10/11) =

0.824539..., and all packings for a > 0.623387... consist
of two phase-separated monodisperse Barlow phases. We have
excluded the rectangular region o < 0.20, x > 11/12. Shadings
indicate phase composition, as specified in Fig. 2.

However, as « — 0 and x — 1, the number of distinct
densest packings approaches infinity due to the infinite
number of XY, and similar packings. For this reason, we
exclude the region a < 0.2, x> 11/12 from our study,
truncating at & = 0.2 because it is close to the maximum
value @ = 0.216 633 ... at which 11 small spheres fit in the
interstices of a Barlow packing of large spheres.

When « is near the Kepler limit of unity, the densest
packings consist of two phase-separated monodisperse
Barlow phases of small and large spheres with packing
fraction W/\/ﬁ [21]. This is the case in Fig. 1 for all
packings with a > 0.623387.... In general, the surface
is continuous and piecewise differentiable, though, as
a — 0 and x — 1, the density of curves along which the
surface is not differentiable approaches infinity.

In R?, periodic, quasicrystalline [23], directionally pe-
riodic [24], and disordered [25] structures can all be
found among the putative densest binary disk packings
[18,26,27]. We believe that all of these types of structures
might be present among the densest binary sphere packings
in R? as well, though we do not identify quasicrystalline or
disordered structures here. Because of computational con-
straints attributable to the scope and resolution of our
survey in (@, x), we have limited our investigation to
periodic packings considering bases of 12 and fewer
spheres. This limitation substantially increases the diffi-
culty of identifying any aperiodic packings, which most
often cannot be approximated well by a periodic packing
with a basis of 12. The directionally periodic packings that
we have identified are those for which no boundary cost
exists between phases, e.g., between AlB, and monodis-
perse phases, and these packings are therefore degenerate
in density with periodic packings.

Identifying the densest packings.—To identify the dens-
est infinite binary packings in R?, we begin with the
obvious statement that, at all given (a, x), there is a densest
packing that consists of a finite number of phase-separated
alloy and monodisperse phases. Since we limit ourselves in
this work to minimal bases of no more than 12 spheres, we
must assume that all of these alloy phases can be con-
structed from repetitions of local structures consisting of
12 spheres or fewer. Though we recognize that this latter
assumption is most likely false for some values of (a, x),
we contend that for the majority of the area of the parame-
ter space studied it is correct.

We describe a distinct alloy as one with a unique combi-
nation of composition of spheres in its minimal basis and
lattice system characterization of its fundamental cell. This
is a more encompassing characterization than that applied
in Ref. [18], where periodic alloys in the densest binary disk
packings were classified by composition and the numbers of
small and large sphere contacts in the fundamental cell. For
example, the distinct alloy with six small and one large
sphere in its minimal basis and fundamental cell belonging
to the triclinic lattice system exhibits a wide range of
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FIG. 2 (color online).

Phase diagram in (e, x), excluding the region @ < 0.2 and x > 11/12, of the densest-known infinite binary

sphere packings considering periodic packings with minimal bases of 12 or fewer spheres.

contact networks over the range 0.292 = a = (0.344 when
itappears in the densest packings. To illustrate this point, we
have divided this alloy into three subcategories: (6-1)g,
(6-1)¢, and (6-1),, where the subscript indicates the number
of large sphere contacts per large sphere, as depicted in the
detailed phase diagram (Fig. 2). We note that the alloy could
be further subdivided by the numbers of small-small and
large-small contacts.

The boundaries between phases are negligible in the
infinite volume limit, and so the packing fraction of a
collection of phase-separated monodisperse and S distinct
alloy phases can be written as

7[(1 = x)R] +xR3]
x)Cs+3P le(L’— ’CS

d(a,x)= (1)

xCS+(1— cLy
with C3 and Ck the volume per sphere, respectively, in a
close-packed Barlow packing of small and large spheres,
xF the relative fraction of large spheres distributed in alloy
phase i, and C; the volume of a fundamental cell of alloy
phase i containing L; large and §; small spheres. The
constraints x- =0, Zl xk=1-x and 3% (5;/L))
xb = xare Vahd due to conservation of particle numbers.

To find the densest packing ¢ .«(a, x) from among B
alloy and two close-packed monodisperse phases, Eq. (1)
must be maximized. This is accomplished by treating the
aforementioned 8 + 2 constraints and the summation term
in the denominator of Eq. (1) as a linear-programming
problem where the objective is to minimize the summation.
From this postulation, it can be proved [28] that there is
always a densest binary packing consisting of no more than
two phase-separated phases, though it may be degenerate
in density with packings consisting of more than two
phases or with mixed phase packings.

By using Eq. (1) and considering a fixed value of «, the
densest infinite binary packings constructed from binary
alloys with bases of 12 or fewer spheres can be found for
all values of x. This only requires knowing the densest
packings in a fundamental cell for combinations of positive

integers S; and L; such that S;+L; =273, ...,12
Employing the TJ algorithm, we have solved these prob-
lems (putatively) to accuracy of about 107* in ¢ for a
spaced 0.025 apart and on a finer grid with a spaced about
0.0028 apart for certain values of S; and L; where particu-
larly dense packings were identified.

Figure 2 is our determination of the phase diagram,
described with heretofore unattained accuracy, for the
densest infinite binary sphere packings considering peri-
odic packings with minimal bases of 12 or fewer spheres.
In the diagram, the seven previously unrecognized distinct
alloys are described according to the composition of their
minimal basis, e.g., (6-6) for a packing with 6 small and
6 large spheres per fundamental cell. In Fig. 2, the points
(lines) where the composition of phase-separated phases
changes from alloy plus monodisperse packing of small
spheres to the same alloy plus large spheres are not drawn.
Additionally, when only one alloy is listed, it is assumed
that the densest packing consists of a monodisperse
phase and an alloy phase, except at points such that
x=S8,;/(S; + L;), with S; and L; the respective numbers
of small and large spheres in the alloy phase listed, where
only the alloy phase is present.

We briefly describe the 17 distinct alloys here, leaving
the detailed descriptions for a later work [28]. The XY,
alloys are present for n = 1, 2, 4, 8, 10, and 11. In these
packings, the large spheres are close-packed Barlow pack-
ings, and the small spheres are inside the interstices as
rattlers, movable but caged spheres, except for “magic”
[18] @ where they are jammed. Additionally, for n = 2, 4,
8, and 10, there are XY, alloys for « greater than the magic
radius ratios. These packings consist of large spheres
arranged as in a Barlow packing but not in contact, with
interstitial jammed small spheres arranged as was the case
for the magic a.

The AIB, alloy is well known, and the HgBr, and
AuTe, alloys, described in another work [16], have, re-
spectively, four small and two large and two small and
one large spheres in their fundamental cells. The alloys
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belong to the orthorhombic and monoclinic lattice systems,
respectively. The alloy listed as (2-2)* exhibits the same
packing fraction (error of less than 10™%) over the range
0.480 = o = 0.497, where it appears in the densest pack-
ings as the alloy described in Ref. [19] as “structure 2,”
though structure 2 has four small and four large spheres in
its fundamental cell. Because of the precise agreement of
packing fractions, we postulate that the two alloys may be
the same or have materially negligible differences over the
range 0.480 = a = 0.497.

There are two alloys, (11-1) and (10-1), that are similar
to the XY, and XY, packings except that their fundamen-
tal cells belong to the tetragonal and rhombohedral lattice
systems, respectively, as opposed to cubic. The (6-1);,
alloy can be described as an orthorhombic body-centered
packing of large spheres, each with ten large-large sphere
contacts, with four small spheres on each face. The alloy
subdivided as (6-1)g, (6-1)4, and (6-1), in Fig. 2 is similar
but with a skewed fundamental cell belonging to the tri-
clinic lattice system.

Over the range 0.414 < a < 0.457 where the (6-6) alloy
appears in the densest packings, we have found that, in
simulation, increasing the basis from one small and one
large spheres up to six small and six large spheres in a one-
to-one ratio results in alloys with increasing packing frac-
tion. The simulations with four large and four small
spheres in the fundamental cell produce an alloy with
packing fractions that agree (error of less than 10~%) with
those of “‘structure 1”° described in Ref. [19]. The (5-2)
alloy is arranged as offset square lattice layers of large
spheres with small spheres in between; the alloy belongs to
the monoclinic lattice system. The (7-3) alloy fundamental
cell belongs to the orthorhombic lattice system. The alloy
is similar to three adjacent fundamental cells of an AlB,
packing with one extra small sphere inserted.

Our determination of the phase diagram (Figs. 1 and 2)
describes an unexpected diversity in the densest binary
sphere packings, with 17 distinct alloys present. One im-
plication of these findings is that entropic (free-volume
maximizing) particle interactions contribute to the struc-
tural diversity of mechanically stable and ground-state
structures of atomic, molecular, and granular solids.
Additionally, the structures we have identified can be
useful as known points of departure when investigating
experimentally the properties of binary solids and colloids
composed of particles that exhibit steep isotropic pair
repulsion. Finally, our results serve as crucial reference
states for studies of disordered binary sphere packings.

We have carried out a comprehensive study of the dens-
est infinite binary sphere packings at high resolution in
a and x, leading to the discovery, employing the TJ algo-
rithm, of many heretofore unknown structures. Though we
have limited ourselves to minimal bases of 12 or fewer
spheres, the discovery of the (7-3), (6-6), and (5-2) alloys
suggests that periodic structures with minimal bases larger

than 12 and further directionally periodic, quasicrystalline,
and disordered structures might be present among the
densest packings. Additionally, the densest binary pack-
ings are relevant to understanding the physics of glassy
binary sphere solids or colloids near and above the freezing
point. In future work, we will investigate these
possibilities.
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