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Local Run-Up Amplification by Resonant Wave Interactions
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Until now, the analysis of long wave run-up on a plane beach has been focused on finding its maximum
value, failing to capture the existence of resonant regimes. One-dimensional numerical simulations in the
framework of the nonlinear shallow water equations are used to investigate the boundary value problem
for plane and nontrivial beaches. Monochromatic waves, as well as virtual wave-gage recordings from real
tsunami simulations, are used as forcing conditions to the boundary value problem. Resonant phenomena
between the incident wavelength and the beach slope are found to occur, which result in enhanced run-up
of nonleading waves. The evolution of energy reveals the existence of a quasiperiodic state for the case of
sinusoidal waves. Dispersion is found to slightly reduce the value of maximum run-up but not to change
the overall picture. Run-up amplification occurs for both leading elevation and depression waves.
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Despite mathematical difficulties, wave run-up, which is
the maximum vertical extent of wave uprush on a beach
above still water level [1], has been extensively studied
during the last 50 years. Progress was first made to the one-
dimensional long wave problem. From the 1950s until
1990, several major contributions were made to the initial
value problem of long wave run-up [2—-6], mainly through
the use of the Carrier and Greenspan [2] (CG) transforma-
tion, that allows the reduction of the two nonlinear shallow
water equations (NSWESs) into a single linear equation.
After the two 1992 tsunamis (Nicaragua and Flores Island),
measurements suggested that the shoreline receded before
inundation took place, an observation that lead Tadepalli
and Synolakis [7] to propose a new N-shaped wave profile
as a leading wave model. Recently, a more geophysically
relevant N-wave model was derived, and the resulting run-
up on a plane beach was computed [8]. Apart from the
plane beach geometry, wave evolution and run-up have
also been addressed for piecewise linear topographies
[9]. Expressions for long wave run-up that are independent
of the initial waveform were derived by Didenkulova and
Pelinovsky [10]. All the above results dealt with the initial
value problem. Antuono and Brocchini [11] solved the
boundary value problem (BVP) for the NSWE, using the
CG [2] transformation, and applied a perturbation ap-
proach by assuming small incoming waves at the seaward
boundary. Later, the same authors [12] solved the BVP in
physical space without use of the CG [2] transformation.

Concerning the two-dimensional problem, the sole ana-
lytical solution was derived by Brocchini and Peregrine
[13] who used a transformation to relate the longshore
coordinate to the time variable. This operation allowed
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them to use an expression for the horizontal velocity that
reduced the dimensions and transformed their problem into
the already solved one-dimensional canonical problem.
However, their solution is only valid for mild angles of
incidence.

Almost all of the aforementioned studies focus on the
value of the maximum run-up. Nevertheless, extreme run-
up values measured by field studies, like during the 17 July
2006 Java event [14], cannot be explained by the existing
theory. Furthermore, in some cases, on the aftermath of a
tsunami catastrophe, it has been reported that it was not the
first tsunami wave that caused the maximum damage. In
order to explain this phenomenon, scientists assume that
the amplified maximum run-up values of nonleading
tsunami waves are due to reflection and refraction effects
from nearshore topographic features [15]. It is found that
changes in bathymetry (i.e., underwater topography) may
result in wave resonance [16—19]. In the present study, with
the use of one-dimensional numerical simulations, we
attempt to elucidate the run-up amplification by nonlead-
ing long waves.

The maximum wave run-up for the geometry of Fig. 1
was first studied for three different beach slopes, namely,
tand = 0.13, 0.26, and 0.3, using incident monochromatic
waves at x = —L of the form n(—L, ) = =5, sin(wr),
w/+yJgtand/L € (0, 6.29).

The maximum run-up for a given beach slope was found
to depend on the incident wavelength (Fig. 2). For all three
slopes, the maximum run-up is highest when the nondi-
mensional wavelength Ay/L =~ 5.1 (i.e., at L = 100 m
offshore, the resonant wavelength is Ay, = 510 m), where
Ay = 2m\/gLtanf/w is the wavelength of the incident
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FIG. 1. Geometry of the run-up problem.

wave. For increasing slope, the maximum run-up also
increases and reaches an amplification factor R,,,/n¢ =
59.76 when tanf = 0.3, which clearly is extremely high.
Increasing the beach length leads to higher resonant maxi-
mum run-up values, as well as a secondary resonant regime
at Ap/L = 1.5. Amplification is seen for both leading
elevation and depression waves. Adding dispersion to the
system [20] only results in a reduction of the maximum
run-up value at the resonant frequencies, without qualita-
tively changing the overall picture. The aforementioned
values of maximum run-up were not achieved by the first
incident wave, as is the case for Ay,/L > 10, but by sub-
sequent ones (Fig. 3), thus signifying the existence of some
resonant phenomena, the controlling parameters of which
are the incident wavelength and the beach slope. Enhanced
but not as extreme run-up is also present for wavelengths
which are approximately half the resonant ones, an obser-
vation that strengthens the assumption that the harmonics
play an important role on the run-up. The existence of
resonant regimes is not predicted by linear theory [21],

according to which R,../mo = 272L/A, (Fig. 2).
However, the theory is in close agreement with the com-

puted results in the absence of resonance.
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FIG. 2. Maximum run-up amplification ratio as a function of
nondimensional angular frequency (top) and nondimensional
wavelength (bottom) for two beach lengths, namely L = 12.5 m
and 4000 m.

Figure 3 also shows that waves with both resonant and
nonresonant frequencies reach a quasiperiodic state of
equilibrium, which is reached faster when the frequency
is nonresonant. A key difference is the existence of a single
peak (trough) [run-up (run-down)] at the quasiperiodic
state of the resonant regime, while the nonresonant fre-
quencies show multiple peaks (troughs) in their quasiperi-
odic states. This is indicative of the importance of the
synchronization between the incident and reflected waves
on the run-up and run-down.

Next, we describe this novel resonant mechanism in
terms of energy. The potential and kinetic energy of the
wave are, respectively [22], Ex = 1p [ [7, u*dxdz and
Ep =4 pg [ m*dx. The kinetic energy can be reformu-
lated in terms of the total flow depth H = 0 + h as Ex =
30 [p Hu?dx.

The evolution of the energy for the resonant frequency
(w = 0.4 s7!) when tanf = 0.13 is shown in Fig. 4. One
can see that both the maximum potential and kinetic en-
ergies increase with time until the quasiperiodic state is

reached (74/g tanf/L = 30). The potential energy takes its
maximum value at the instance of the maximum run-up,
when the kinetic energy is minimum. However, it is ob-
vious that the maximum potential energy is approximately
5 times larger than the maximum kinetic energy. The
impressive oscillations in the total energy are due to the
large changes of the portion of the computational domain
covered by water during run-up and run-down, which
actually affects the limits of integration in the energy
equations.

In Fig. 5, four different snapshots of the energy density
distribution during run-up are shown in order to shed
more light on the resonant mechanism (w = 0.4 s7!,
tand = 0.13). The first snapshot is taken at the instant

Runup Timeseries
30 T T T T T
—0=04

o5l ---0=06 i

20+ : : , 1

R /no
o

-10 +

0 5 10 15 20 25 30 35 40 45 50

t/gtan(0)/L

FIG. 3. Run-up time series for two different angular frequen-
cies: @ = 0.4 s~!, which is the resonant frequency for tanf =
0.13, and @ = 0.6 s~!, which is a nonresonant frequency for the
same slope (L = 12.5 m).
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FIG. 4 (color). Energy evolution time series for the resonant
frequency @ = 0.4 s~ ! for tand = 0.13, L = 12.5 m.

when the first incident wave hits the initial shoreline. The
potential energy is higher than the kinetic energy, and both
of them are concentrated close to the shoreline. After the
run-up of the first wave, the energy is reflected offshore,
while at the same time energy is transferred shoreward

Energy Density Distribution

by the second incident wave, causing an amplification of
kinetic energy. The same process is repeated by the follow-
ing incident and reflected waves until the quasiperiodic
state is reached. What is interesting is that the horizontal
location where the amplification takes place remains
almost stationary across run-ups and lies closer to the left
boundary than the initial shoreline. After energy is ampli-
fied locally, it travels shoreward, possibly due to the
continuous forcing at the left boundary.

Apart from idealistic simulations with sinusoidal waves,
we explored whether similar resonant phenomena can
occur during a real tsunami. Therefore, a simulation was
run for the 25 October 2010 Mentawai Islands tsunami.
A virtual wave gage was placed at Lon = 100.24° E,
Lat = —3.4° N, where the depth is approximately 120 m,
and the free surface elevation was obtained for the first
10800 s of the tsunami [Fig. 6(a)]. From that data, only the
first 2000 s were used as boundary value using a uniform
slope tand = 0.03, which is close to the actual mean slope
from the location of the wave gage to the closest shore (the
distance of the wave gage to the shore is L = 4000 m). The
time series of the shoreline elevation is shown in Fig. 6(b).
We can observe the run-up of three waves at t = 720 s,
t = 1320 s, and r = 1860 s. It is clear that the first wave
does not cause the highest run-up, even though it has the
highest amplitude, as recorded by the wave gage.

Energy Density Distribution

0.25 1.5
0.2
1
Fio 0.15 ro
3 g
0.5
0.05
0 0
-1 -0.8 -0.6 -04 -02 0 0.2 -1 -0.8 -06 -0.4 -0.2 0 0.2
z/L z/L
(a) (b)
5 Energy Density Distribution s Energy Density Distribution
4.5 7
4
6
35
ae 3 ned
Qs = g
V2 25 NS4
fﬂ‘ 8 ST
NS 2 e 3
1.5
2
1
05 1
0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 -1 -0.8 -06 -04 -0.2 0 0.2
z/L z/L
(c) (d)

FIG. 5 (color).

Energy density distribution during run-up for the case of the resonant frequency (@ = 0.4 s~') when tanf = 0.13 and

L = 12.5 m, at the arrival of the (a) first, (b) second, (c) third, and (d) fourth waves. Note: the scale of the vertical axis differs between

the four snapshots, and the color code is the same as in Fig. 4.
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FIG. 6.
(b) Time series of the shoreline elevation during the first 2000 s.

The fact that the highest run-up is not driven by the
leading and highest wave excited our curiosity to inves-
tigate whether there exists a connection between the reso-
nant mechanism observed when using sinusoidal wave
profiles and the wave-gage recordings. From Fig. 6(b),
one can see that the maximum run-ups are separated by
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(a) Virtual wave-gage (Lon = 100.24° E, Lat = —3.4° N) data obtained for the 25 October 2010 Mentawai Islands tsunami.

approximately 600 s intervals. If we assume that the inci-
dent wave is a sum of sinusoidal waves and 7' = 600 s is
the period of the dominant mode, we can find the wave-
length of that mode using Ay = T+/gL tané. By doing so,
the ratio Ay/L is equal to 5.15 which, according to our
previous results (Fig. 2), corresponds to the resonant
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FIG. 7.

(a) Plane beach perturbed by a Gaussian-shaped bathymetric feature. (b) Amplification ratio as a function of nondimensional

wavelength. (c) Bathymetry in the Mentawai Islands region. (d) Amplification ratio as a function of nondimensional wavelength.

124502-4



PRL 107, 124502 (2011)

PHYSICAL REVIEW LETTERS

week ending
16 SEPTEMBER 2011

regime. Consequently, local resonant amplification of tsu-
nami run-up may explain why in some cases it is not the
first wave that results in the highest run-up.

In addition to simulations with a plane beach, we inves-
tigated two cases of nontrivial bathymetry. The first
consists of a beach perturbed by a Gaussian-shaped under-
water feature, as in Fig. 7(a). Again, the forcing at the
boundary was an idealized sinusoidal signal, although this
time it was limited to only four periods, since in nature one
would not expect a wave train larger than that. In Fig. 7(b),
we can observe the existence of resonant frequencies,
although now the amplification is not as high. What is
intriguing is the existence of multiple peaks, signifying
that resonant phenomena might occur much more often
than expected. We reached the same conclusion when
we studied the second case, which had a real bathymetry
taken from the region of the Mentawai Islands [Fig. 7(c)].
Multiple resonant frequencies can also be observed in this
case [Fig. 7(d)], thus further strengthening the suggestion
that resonant run-up amplification due to wave interactions
is not a rare phenomenon.

In summary, we discovered local resonant amplification
phenomena related to the one-dimensional BVP of the
NSWE on a plane beach. The resonance occurs due to
incoming and reflected wave interactions, and the actual
amplification ratio depends on the beach slope. These phe-
nomena can explain why it is not always the first wave that
causes the highest run-up, as well as why the tail of a single
wave may produce leading-order run-up values. Resonant
mechanisms are not limited to the plane beach paradigm but
can be observed in more complex bathymetries, as well,
thus suggesting that local run-up amplification is not a rare
event. However, when the bathymetry is nontrivial, it is not
clear to what extent resonance is attributed to wave trapping
and generation of harmonics.
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