
Optical Injection and Terahertz Detection of the Macroscopic Berry Curvature

Kuljit S. Virk*

Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA

J. E. Sipe†

Department of Physics and Institute for Optical Sciences, University of Toronto,
60 St. George Street, Toronto, Ontario, Canada, M5S 1A7
(Received 20 April 2011; published 14 September 2011)

We propose an experimental scheme to probe the Berry curvature of solids. Our method is sensitive to

arbitrary regions of the Brillouin zone and employs only basic optical and terahertz techniques to yield a

background-free signal. Using semiconductor quantum wells as a prototypical system, we discuss how to

inject Berry curvature macroscopically and probe it in a way that provides information about the

underlying microscopic Berry curvature.
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Berry’s phase permeates many fields of physics. In
quantum mechanics, the net phase acquired by a wave
function during a cyclic change in the parameters of a
Hamiltonian is a gauge-invariant quantity that has measur-
able effects. This quantity can be directly expressed in
terms of a physical property, called the Berry curvature
(BC), which relates to the Berry phase in much the same
way as the gauge-invariant magnetic field relates to a
gauge-dependent vector potential [1]. In materials science,
it is rapidly becoming clear that the role of the BC is as
fundamental as that of an energy band [2]. The representa-
tion of a position operator in terms of the Bloch states of a
crystal is intimately related to the BC, and it thus appeared
in the works of Adams and Blount [3] on the topic much
earlier than the rigorous formulation by Berry [4]. In the
1990s, King-Smith and Vanderbilt introduced a theory of
electric polarization of solids as a bulk quantity [5], the
present version of which is grounded in Berry’s phase
[2,6]. In parallel to this, the BC has appeared as a central
physical quantity in the work on the anomalous Hall effect
in ferromagnetic materials [7,8] and the intrinsic mecha-
nism of the spin Hall effect [9,10]. Haldane expressed the
nonquantized part of the intrinsic Hall conductivity in
terms of integral of the Berry connection (vector potential
of BC) on the Fermi surface [11], thus recapturing
the essence of Landau’s Fermi liquid theory. Recent
works also show the role of BC in the photogalvanic
effect [12,13].

Central to these effects is anomalous velocity, which
refers to motion of charges perpendicular to their usual
group velocity [3]. As an average of the BC, it appears as
its main experimental manifestation. Though the above
works elucidate the role of the BC in explaining various
phenomena, they are severely restricted as methods to
probe it as a basic property of solids. This is because the
dc response reduces to an integral of Berry curvature over
the full Brillouin zone and, for a partially filled band, to the

volume occupied by the carrier distribution function [11].
The measured response is thus restricted to either the full
Brillouin zone or a slightly displaced equilibrium occupa-
tion function of a partially filled band.
This Letter presents a method to study this important and

complementary quantity of solids, which is much less
restricted in its sampling of the Brillouin zone. It was
anticipated by the work of Moore and Orenstein [14],
who showed how confinement in quantum wells induces
a Berry’s phase that leads to a helicity-dependent photo-
current. While we focus on the hole bands of a GaAs
quantum well (see Fig. 1), chosen because of their large
BC [9] with a rich structure, our method is very general and
in principle can be applied to a wide range of materials. An
optical excitation by circularly polarized light induces a
nonzero transient macroscopic Berry curvature (TMBC) in
such materials, due to the creation of a state that breaks
time-reversal and space inversion symmetry. The injection
is followed by a linearly polarized terahertz wave, which
drives the optically injected carriers. In the presence of
TMBC, the motion of charges has an anomalous compo-
nent, which is perpendicular to the polarization of the
terahertz (THz) wave. The detection of the radiated THz

FIG. 1 (color online). Illustration of the proposed scheme for
injection and detection of macroscopic Berry curvature.
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field in the cross-polarized direction is thus entirely a
signal due to the TMBC. Such a TMBC can be injected
even in materials of Chern class zero, where an equilibrium
MBC is not allowed [15]. This is in contrast to spin Hall
insulators in which a net MBC exists in the ground state.

Our Letter is organized as follows. We begin with a
discussion of the microscopic Berry curvature. We then
discuss the optical injection of TMBC, its detection by
linearly polarized THz excitation, and its intrinsic lifetime
due to electron-hole scattering. Finally, we present the
results of our numerical calculations of the microscopic
and optically injected TMBC, followed by the results of the
anomalous velocity induced by the THz excitation.

Microscopic Berry curvature: Bulk crystals.—The band
theory of solids describes single electron wave functions
by Bloch functions, c nðk; rÞ, for energy bands "nðkÞ. Here
n labels a single energy band with a continuous slope,
starting from the energy levels at the center of the
Brillouin zone [16]. Between two degenerate bands, or
within a single band, the vector

� nmðkÞ ¼ i
Z

dru�nðk; rÞ @

@k
umðk; rÞ (1)

acts like a vector potential in the momentum space dynam-
ics of electrons, its dependence on the choice of the phases
of the fumðk; rÞg leading to the analogue of a gauge depen-
dence. Taking the curl of �nmðkÞ leads to the (microscopic)
BC, a ‘‘gauge-invariant’’ quantity at each k,

��
nmðkÞ ¼ ½r� �nmðkÞ��� i����

X
"p¼"n¼"m

½��npðkÞ; ��pmðkÞ�:

(2)

In the presence of time-reversal and spatial inversion sym-
metries, �ðkÞ takes the form of a traceless matrix within
each degenerate subspace [3]; the MBC

h�i � X
nmk

�nmðkÞ�mnðkÞ;

where �nmðkÞ is the single particle density matrix, then
vanishes in equilibrium; even in a material such as GaAs,

where there is no inversion symmetry, the equilibrium
MBC vanishes because the band structure is of Chern class
zero. Away from equilibrium, such as in the dc response of
a p-doped semiconductor, the MBC can play a role [8–10],
but optically excited distributions allow much greater ac-
cess to its local probing in k space.
Quantum wells.—We focus on the valence states of a

quantum well, described by the Luttinger model of a
square quantum well grown along the ½001� � ẑ direction.
In this model [17] there are degenerate (� ) wave func-
tions described by 4-component spinors, labeled f�

n ðk; zÞ
for each two-dimensional subspace n, and the microscopic
BC is equal to ẑ�z

nnðkÞ�3, where

�z
nnðkÞ ¼ �z�	

Z
dz@�f

�y
n ðk; zÞ � @	f�

n ðk; zÞ; (3)

and�3 is the third Pauli matrix. Figure 2 shows the top two
valence energy bands and the corresponding Berry curva-
ture for a 15 nm thick quantum well. The middle panel
shows �z

nnðkÞ defined in (3); large �z
nnðkÞ results from a

large mixing of two or more states [18], here arising
because of contributions from the light hole to the two
bands.
Macroscopic Berry curvature.—No macroscopic effect

results from �z
nnðkÞ unless an imbalance is created be-

tween the hole populations of the f� states of these sub-
spaces, leading to a nonzero h�zi. In optical excitation
across the band gap with left-circularly polarized light, the
matrix elements connect f� to the spin up conduction
subbands with a probability 1=3 of the corresponding
transition from fþ

n to the same conduction subband. This
yields a 3:1 population imbalance between the two other-
wise degenerate states, leading to a nonvanishing h�zi. The
possibility of creating this imbalance in the nonequilibrium
state is a well-established experimental fact [19]. A cor-
rection arises from the electron-hole interaction such that
the final state is an exciton. This correction is small for
ionization states (the only states relevant above the optical
gap) and decreases the higher up we move in the band.
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FIG. 2 (color online). (a) Highest valence (heavy) hole bands for a 15 nm thick [001] GaAs quantum well; (b) Berry curvature
�zðkÞ [lines as in (a)]; (c) h�zi (thick solid line) and h�z

ni for odd parity states [lines as in (a)]; (d) Coulomb scattering rate between
the þ and � states for optical excitation at 90 meV above gap energy. Lines as in (a).
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To access h�zi we imagine a linearly polarized THz
electric field EðtÞx̂ driving the optically injected hole
population. Terahertz excitation does not couple fþ

n and
f�
n states since there is no momentum matrix element

between them, and therefore it does not disturb the injected
h�zi. The Schrödinger equation for the hole density matrix
�ðk; tÞ coupled to the external THz field polarized along x̂
(or [100]) direction reads

i

�
@
@

@t
þ eExðtÞ @

@kx

�
�ðk; tÞ

¼ ½H0ðkÞ þ eExðtÞ�xðkÞ; �ðk; tÞ� þ _�jscatt: (4)

Here H0ðkÞ is the Luttinger Hamiltonian, and the last term
is the contribution of Coulomb scattering. A gauge trans-
formation exists such that �xðkÞ ¼ 0 locally in the region
of interest, and within this gauge we can easily compute the
solution of (4) with �ðk; 0Þ set equal to the hole populations
created by optical excitation. The expectation value of the
velocity operator v is then calculated at each time point to
study the macroscopic motion of charges:

hvðtÞi ¼ X
k

�nmðk; tÞvmnðkÞ: (5)

Sum rules that relate� to � [16] can be used to show that in
the linear regime an anomalous contribution to the average
velocity may exist and is proportional to the macroscopic
Berry curvature:

hvðtÞianomalous ¼ �ŷ
e

@
h�ziExðtÞ; (6)

until h�zi decays due to scattering between the � state
populations, primarily through the dynamic polarizability
of the electron gas, described by the term _�jscatt. The
electrons generated by the optical excitation would always
diminish the Berry phase effects, and therefore this is an
intrinsic lifetime because it survives in the limit of no
impurities. The self-energy effects may be decomposed
into two contributions: (A) decoherence within each set
(either þ or �) of states and (B) population transfer
between the sets of states. Type A limits the sensitivity
of the dynamics within each set to the microscopic BC,
while type B reduces the net effect of MBC; B effects
degrade the signal more effectively than A effects by
restoring the time-reversal symmetry broken by the initial
optical excitation.

We model these effects by setting _�nmðk; tÞjscatt ¼
�
nm�nmðtÞ for off-diagonal terms (type A; n and m
in the same set) and _�nnðk; tÞjscatt ¼ ��n �nðkÞ½�nnðk; tÞ �
� �n �nðk; tÞ� for population relaxation terms [type B; here
nð �nÞ refers to the fþ

n (f�
n ) state]. To estimate the rates

�nmðkÞ and �n �nðkÞ, we start with the RPA self-energy,
employ the generalized Kadanoff-Baym ansatz [20], and
follow by the Markov approximation. The Auger scattering
of holes by electrons is negligible, due to the energy

conservation condition at each vertex in the self-energy
diagram.
Results and discussion.—For excitation with a 100 fs

Gaussian optical pulse, the resulting h�zi is shown as a
function of energy above the band gap in the third panel of
Fig. 2. The panel also shows the breakdown of h�zi into
contributions from the individual bands. The initial rise in
h�zi is entirely due the first band, in which the dominance
of fþ component leads to the sign opposite to its micro-
scopic counterpart in the middle panel. The large contri-
bution from the second band starts to dominate above
85 meV.
The rightmost panel in Fig. 2 shows the scattering rate

�n; �nðkÞ for each of the two bands at a carrier density of

1011 cm�2. The rate remains below 1 THz and is sup-
pressed at small k, where the spinors have orthogonal
dominant contributions. We find that the 
nmðkÞ range
between 1 and 4 THz, but their effect on the THz dynamics
is only secondary as discussed in relation to type A inter-
actions. So we can expect that h�zi does not vanish during
the subsequent THz probe. Thus we see that the effects of
relevant scattering between electrons and holes are signifi-
cantly suppressed by symmetries of the well.
We now turn to the results of our numerical solution of

(4) and present the normal and anomalous hole velocities
calculated via (5). The field is polarized along x̂ so that the
anomalous velocity is along ŷ; see Fig. 1. Our calculations

are performed with EðtÞ ¼ E0e
�ðt�t0Þ2=2�2p cosð!0tÞ. We

chose E0 ¼ 0:1 kV=cm, !0 ¼ 1 THz, �p ¼ 1 ps, and t0
a conveniently chosen point in time. By comparing the
velocities with and without the _�jscatt term in (4), we found
that the anomalous velocity is reduced by ’ 36%, while the
normal velocity undergoes little change by scattering as
expected.
In Fig. 3, we demonstrate the relationship between the

magnitude of hvyðtÞi, h�zi, and the hole populations for

different photon energies above the gap; large anomalous
velocities clearly arise when the Berry curvature of the
populated states is large. These calculations lie in the linear
regime, where (6) is a good approximation; in the non-
linear regime, no clearcut relationship exists between the
expectation value of the velocity operator and the h�zi as
the concept of intraband motion itself breaks down.
As shown in Fig. 1, the anomalous velocity could be

detected by measuring the emitted THz radiation polarized
perpendicular to the incident field. While the much lighter
electrons in the conduction band would also emit THz
radiation, and at much higher power than the holes, the
Berry curvature of conduction bands in these quantum
wells vanishes. So only the anomalous velocity of holes
would contribute to the THz emission perpendicular to the
incident field. In addition, by placing the THz detector at
an oblique angle in the plane of the incident field vector,
the dipole field of the parallel component can be highly
suppressed while leaving the perpendicular component
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unaffected. Separation of the desired signal from back-
ground is thus already built into this method.

In the above analysis, we took only intrinsic scattering
due to Coulomb interaction among electrons into account.
We emphasize that a large hole mobility is crucial to the
experimental success of this scheme. Spin-flip scattering of
holes is an approximate concept in this scenario, but it is a
useful characterization of the detrimental effects of impu-
rity scatterers in our scheme. It is suppressed exponentially
close to the � point but rises sharply to rates faster than
1 THz as a function of k for areal concentrations of
1010 cm�2 [21]. The effects of phonons are subtle. On
the one hand, they may provide a dominant scattering
channel. On the other hand, as observed previously, only
those scattering events that link the partner states are
actually detrimental. Detailed calculations of these effects,
including lattice vibrations, are the focus of our ongoing
work.

In conclusion, we have shown that significant macro-
scopic Berry curvature can be injected in GaAs quantum
wells by circularly polarized light. The lifetime of this
macroscopic effect is at least a few picoseconds, and
its robustness results from the properties of hole wave

functions under the symmetry operations of the quantum
well. We have presented a scheme to make this macro-
scopic effect accessible experimentally via the anomalous
contribution to the THz emission from a quantum well
driven by a linearly polarized THz field. A successful
implementation of this scheme would open up a new venue
in exploration of the Berry curvature as a fundamental
property of solids.
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FIG. 3 (color online). THz induced velocities (left) and pop-
ulations (right) at 20, 90, and 350 meV (top to bottom) for a
15 nm wide quantum well. Anomalous (normal) velocities are in
solid (dashed-dotted) lines.
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