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Understanding the coupling of graphene with its local environment is critical to be able to integrate it in
tomorrow’s electronic devices. Here we show how the presence of a metallic substrate affects the properties of
an atomically tailored graphene layer. We have deliberately introduced single carbon vacancies on a graphene
monolayer grown on a Pt(111) surface and investigated its impact in the electronic, structural, and magnetic
properties of the graphene layer. Our low temperature scanning tunneling microscopy studies, complemented
by density functional theory, show the existence of a broad electronic resonance above the Fermi energy
associated with the vacancies. Vacancy sites become reactive leading to an increase of the coupling between the
graphene layer and the metal substrate at these points; this gives rise to a rapid decay of the localized state and
the quenching of the magnetic moment associated with carbon vacancies in freestanding graphene layers.
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Exciting properties for graphene have been proposed for
a long time [1]. However, it was not until 2004 [2] that
graphene ceased being a theoretical chimera to become the
object of desire of the scientific community. In just a few
years, most of these extraordinary properties have already
been demonstrated [3—5] and many others are emerging as
a result of the tremendous experimental and theoretical
efforts devoted to this material [6,7]. As a consequence,
graphene has undoubtedly become one of the most prom-
ising candidates to play a key role in future technology.
Many of the experimental efforts have been invested in
growing larger and higher quality graphene layers and also
in understanding and controlling the coupling of graphene
with other materials, in particular, with metals, a must to
incorporate graphene to real devices. Epitaxial graphene on
metals represents an ideal route to fulfilling both require-
ments. Highly perfect graphene sheets can be grown on
various metals [8—10] and very recently macroscopic-sized
graphene films have been grown and subsequently trans-
ferred to arbitrary substrates [11,12]. The interaction of
graphene layers with the different metallic substrates
strongly depends on the metal itself [13,14], but according
to its strength two main groups can be identified: strongly
and weakly interacting systems [10]. While properties of
graphene monolayers belonging to the first group can be
quite different with respect to the freestanding case [15], in
the weakly interacting systems the electronic structure of
ideal graphene is basically preserved, as revealed by the
experimental observation of Dirac cones comparable to
those of perfect graphene [10,16].

To date, graphene on metals research has basically fo-
cused on pristine graphene monolayers adsorbed on metal
surfaces, which are at present quite well understood
[10,16]. In contrast, despite the pressing challenge to tailor
graphene layers in order to fully exploit graphene’s
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potential, very little is known about the influence of the
metallic substrate in the properties of modified graphene
layers [17]. Here, we show that while properties of pristine
graphene adsorbed on a weakly interacting metal such as
Pt(111) are reasonably preserved, the situation is dramati-
cally different when point defects are introduced in the
graphene layer.

Our starting point is a perfectly clean graphene mono-
layer adsorbed on Pt(111), one of the weakest interacting
graphene-metal systems [10,16]. As a result of such a weak
interaction, the graphene layer presents several orienta-
tions with respect to the Pt(111) surface, giving rise to
various moiré patterns [16,18-20]. In addition, recent pho-
toemission experiments have shown the existence of 7
bands presenting linear dispersion, the same Fermi velocity
as in freestanding graphene (FSG) and a Dirac point
slightly shifted to ~ + 300 meV [16]. We formed a com-
plete graphene monolayer on the clean Pt(111) surface by
chemical vapor deposition of ethylene in ultrahigh vacuum
(UHV) environments at temperatures above 1275 K. Our
experiments were performed at 6 K using a homemade low
temperature scanning tunneling microscope (LT-STM) op-
erating in UHV [21]. Figure 1(a) shows a large STM image
of an atomically perfect graphene/Pt(111) surface, where
two moiré patterns can be identified. In the upper-left
corner an (\/2_1 X \/ﬁ)Rll" moiré is found, while the
rest of the image shows a 3 X 3 moiré (both periodicities
with respect to the graphene lattice). Such a 3 X 3 super-
periodicity is due to a 19.1° angle between graphene and
the Pt(111) surface, corresponding with a lattice misfit of
0.60% [19].

All the experimental results shown here are basically
independent of the moiré periodicity; thus, for the sake of
simplicity and to facilitate a straightforward comparison
with theory, we will restrict ourselves to the 3 X 3 moiré
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[Fig. 1(b)], one of the most frequently found in the gra-
phene/Pt(111) system [16]. Information about the local
density of states (LDOS) of the sample was obtained
with atomic precision by measuring at 6 K differential
conductance (dI/dV) spectra in open feedback loop
mode using the lock-in technique with frequency 2.3 kHz
and ac modulation of 1 mV. Our dI/dV spectra measured
in the pristine graphene surface show a clear dip at
~ + 300 mV accompanied by a V shaped rise at both
sides, see Fig. 1(e). Recent scanning tunneling spectros-
copy (STS) experiments measured on a partially covered
graphene/Pt(111) surface, have reported dI/dV spectra
with a slight dip at +150 mV [22], which was related to
the unoccupied surface state existing in Pt(111) [23].
However, the clear V shape of our spectra around the dip
and its location at +300 mV, coinciding with the Dirac
point energy theoretically predicted [13] and estimated
from photoemission experiments [16], make us believe
that the dip we observe at +300 mV is associated with
the position of the Dirac point in the graphene/Pt(111)
surface. Another piece of evidence comes from the results
of our density functional theory (DFT) calculations [24]
based on VASP [25]. We have studied the 3 X 3 moiré using
an empirically corrected version of the Perdew-Burke-
Ernzerhof functional [26] that includes the effects of van
der Waals interactions [27]. The calculated bands of the
system are shown in Fig. 1(d) (in black). In the same figure
we also include the bands of pure graphene (red dashed
line) shifted by +410 meV to make them overlap with
their equivalent in the moiré. Consistently, the calculated
DOS of Fig. 1(f), which can be directly compared to the
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FIG. 1 (color online). (a) STM image of the pristine graphene/
Pt(111) surface showing two different moiré structures. (b) Zoom
in of the 3 X 3 region highlighted in (a). Sample bias: 50 mV,
tunneling current: 1.0 nA for (a) and (b). STM data were
measured and analyzed with WSXM [39]. (c¢) Simulated STM
image of 3 X 3 graphene/Pt at V = +100 mV. (d) Calculated
band structure of the 3 X 3 graphene/Pt moiré (black lines) and
pure graphene (red dashed lines). Pure graphene bands have been
shifted by +410 meV. (e) STS measurement of the LDOS of
pristine graphene on Pt(111). (f) Theoretical DOS of the 3 X 3
moiré projected on the p states of C atoms (s and d contributions
are negligible in this energy range).

experiment in Fig. 1(e), presents a V-shaped minimum at
that same energy. Our theoretical results capture the struc-
tural properties of the graphene/Pt(111) system very well,
in opposition to other methodologies that include disper-
sion interactions into standard DFT functionals. In particu-
lar, our calculated average distance between graphene and
the uppermost Pt layer is 3.35 A, whereas LEED/LEEM
experiments yield 3.30 A [16].

Experimental STM images of graphene adsorbed on
Pt(111) [Fig. 1(b)] can be understood in more depth with
the help of theory. In our approach, we use a nonequilib-
rium Green’s function formalism to evaluate the currents
[28], using the OPENMX code [29] to map the Hamiltonian
into a local orbital basis, and an idealized Pt apex with a
single dz®> orbital to represent the microscope tip.
This model produces atomically resolved images [see
Fig. 1(c)] in good agreement with the experimental results
in Fig. 1(b). Surprisingly, the brightest features in the
calculated image correspond to C atoms that are lowest
in the graphene sheet. Notice that in the 3 X 3 moiré the
lattice mismatch is very small, and the topographic corru-
gation, measured as the height difference between the
lowest and highest C atoms, is only 0.02 A. In this case,
the observed anticorrelation between the simulated image
and the atomic topography implies that the STM corruga-
tion is not a geometrical effect but instead it can be
explained as a purely electronic effect.

To atomically tailor the graphene layer adsorbed on
Pt(111), we have generated point defects on it by irradiat-
ing the surface with 140 eV Ar™ ions, which are known to
mainly produce single C vacancies on a graphite surface
[30]. Our LT-STM images show that the previously pristine
graphene sheet presents now a number of almost identical
bright features, associated with the amount of Ar" ions
reaching the surface, see Fig. 2. The exact shape of these
features slightly depends on its location with respect to the
moiré pattern, as shown in Figs. 2(b)-2(e). We see an
elongated protrusion occupying an extension of two

FIG. 2 (color online).

(a) STM topography, measured at 6 K,
showing the graphene/Pt(111) surface after the Ar™ irradiation.
Sample bias: —30 mV, tunneling current: 0.8 nA. (b)—(e) Zoom-
ins showing the small variation in the bright features shape for
different moiré positions. All bright features on the image can
basically be identified with one of these four images.
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honeycomb lattice parameters, surrounded by a nontrivial
pattern of high LDOS intensity extending less than 1 nm.
In ideal graphene, the presence of a point defect should
generate short-wavelength modulations of the LDOS with
(\/§ X \/§) R30° (R3 in the following) periodicity due to
intervalley scattering. In well-decoupled graphene layers,
as epitaxial graphene on SiC or HOPG surfaces, such R3
patterns associated with atomic-size impurities have been
observed by means of low bias STM images, which are a
measure of the LDOS at Ej, [30-34]. 2D Fourier trans-
forms of our low bias STM images measured in samples
with a high enough density of generated atomic vacancies,
also allowed us to measure such R3 modulations and to
estimate a Fermi wave vector kz ~ 0.5 nm~!, which is
consistent with Ep = +300 meV and a Fermi velocity
10° m/s as recently measured by photoemission [16,24].
Contrary to the case of the graphite surface [30], we
cannot directly identify point defects generated by Ar
sputtering in the graphene/Pt(111) surface with the three-
fold patterns predicted for single C vacancies on a FSG
layer [31]. Thus, we have to bring into play DFT calcu-
lations in order to unravel the nature of the atomic point
defects observed in this system. In our simulations, we use
a supercell with 2 X 2 units of the 3 X 3 moiré and a single
C atom removed [24]. For this structure, several adsorption
sites are possible, depending on the relative location of the
vacancy and the underlying Pt surface. We have studied
some of these possibilities, finding that the best match to
STM experiments occurs for structures which reconstruct
similarly to single vacancies on isolated graphene sheets
[35]. In the reconstruction of freestanding graphene, two of
the three undercoordinated C atoms surrounding the va-
cancy move closer to each other and become weakly
bonded, forming a pentagon ring, and the third undercoor-
dinated atom moves out of the graphene plane by only
~0.1 A. In graphene/Pt(111), the third atom and one of its
neighbors move out of the plane and towards the Pt by
~1 A, and form two new chemical bonds with Pt atoms of
the surface [Figs. 3(a) and 3(b)]. Besides, the average
distance between the graphene sheet and the topmost Pt
layer has decreased by ~0.08 A. It is thus clear that the
previously inert graphene layer has become very reactive.
The strong interaction between the graphene with vacancy
and the metal also results in a quench of the possible
magnetic moment of the system, with the relaxed structure
being nonmagnetic. A planar structure, such as the one of
the vacancy in isolated graphene, would be still magnetic
but with a smaller magnetic moment as the doping effect
induced by the metal pushes the C 7 states of both spins
above the Fermi level. The relaxation of the unpaired
C atom out of the graphene plane destroys the magnetic
state (see [24]). This structural distortion has a modest
energy cost in the isolated graphene but is clearly stabilized
by the interaction with the substrate in the graphene/Pt
system. The simulated STM images present a pattern like

a) 1.84A

FIG. 3 (color online). Relaxed single carbon vacancy in a
6 X 6 unit cell [4 cells of the 3 X 3 graphene/Pt(111) moiré],
with the 2 C atoms that move towards the Pt highlighted: (a) top
view, (b) side view, (c) calculated constant current STM
image at V = +100 mV with the atomic model superimposed.
(d) Experimental STM image of a vacancy from Fig. 2(a).

that in Fig. 3(c). The brightest features are a heart-shaped,
elongated protrusion and a small, oval protrusion next to it.
Another characteristic feature is a small dark area right
next to the elongated protrusion. All of these structures can
be recognized in the experimental images [Fig. 3(d)]. By
comparing the simulated image with the position of the
atoms [Fig. 3(c)] we can associate the heart-shaped feature
to the region where the two weakly bonded C atoms and the
vacancy itself are located, the dark region to the out-of-
plane C atoms, and the small, oval feature to the other atom
in the pentagon ring which belongs to the same sublattice
as the weakly bonded pair. The modulation of the charge
density revealed by the STM image decays fast. However,
we do not try to compare it quantitatively with the experi-
ment, since our unit cell is still small to model an isolated
vacancy, and we believe the intensity decay can be affected
by interference between neighboring cells (see [24]).

Introducing single C vacancies in an isolated graphene
layer has a profound impact in its properties. According to
many theoretical studies [36—38], they give rise to quasi-
localized states at the Fermi level, which can be associated
with the generation of local magnetic moments around the
C vacancies and produce a strong reduction of charge
carriers’ mobility. Such theoretical expectations were re-
cently confirmed by some of us by STS experiments on C
vacancies on the graphite surface, which revealed the
presence of a very sharp resonance at the Fermi energy
extending more than 3 nm away from each single C va-
cancy [30]. It is thus crucial to understand how the cou-
pling with the metallic substrate will affect the properties
of such C vacancies.

Our STS measurements on C vacancies in
graphene/Pt(111) show a strong increase of the LDOS
starting at the Dirac point and reaching a maximum around
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FIG. 4 (color online). (a) 6 K STS measurements of the LDOS
on a C vacancy (blue circles) and on pristine graphene/Pt(111)
(red triangles). (b) Theoretical DOS of a single C vacancy on
graphene over Pt(111) projected on the C atoms. (¢) dI/dV
spectra measured on five different C vacancies. (d) dI/dV map,
measured at +500 mV. 1 to 5 point to the same vacancies as
panel (c).

+500 meV. As it can be seen in Fig. 4(a), this is reflected
in our dI/dV spectra as a broad electronic resonance
centered at +500 meV with a FWHM ~150 meV.
dl/dV spectra acquired on C vacancies located in different
positions of the 3 X 3 moiré, show that all C vacancies
present this broad electronic resonance at +500 meV in-
dependently of its position inside the moiré, which points
to a small influence of the moiré superstructure on its
properties. The only influence detected was the variation
of the resonance height for C vacancies on different moiré
positions, see Figs. 4(c) and 4(d). Analogous results were
also obtained for different moiré patterns. Since the
electronic resonance associated with any vacancy lays at
a fixed energy of +500 meV, it is possible to map its
spatial extension by conductance images at +500 mV.
Figure 4(d) shows one of such conductance images mea-
sured on a 15 X 15 nm? region where 11 single C vacan-
cies have been generated by Ar™ irradiation. As it can be
observed, the localized state only extends 0.6 nm away
from the center of the vacancies. The conductance map
also reflects the resonance height variation found for
vacancies in different moiré locations. Our calculations
(see Fig. 4 and [24]) show that this peak can be assigned
to a 7 band delocalized over the atoms of sublattice
complementary to the one in which the defect was created,
with the largest contributions coming from the atoms
closest to the vacancy, and, in particular, from the two
weakly bound atoms forming the dimer.

Thus, our results show that the electronic properties of C
vacancies in a graphene layer on top of a metal strongly
differ from the ones found for C vacancies in a well-
decoupled graphene layer as it is the graphite surface
[30]. As shown by our DFT calculations these differences
can be explained as due to the increase of the interaction
with the metallic surface after the C vacancy formation.

In summary, our findings demonstrate that even in
weakly coupled graphene-metal systems the presence of

the metal has to be seriously taken into account in order to
controllably tune graphene properties by locally modifying
its structure. We have shown that the interaction with the
metal strongly increases when single C vacancies are in-
troduced in the graphene layer, discarding the appealing
possibility of inducing magnetic properties on this gra-
phene system by removing C atoms.
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