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The fundamental collective degree of freedom of fractional quantum Hall states is identified as a

unimodular two-dimensional spatial metric that characterizes the local shape of the correlations of the

incompressible fluid. Its quantum fluctuations are controlled by a topologically quantized ‘‘guiding-center

spin.’’ Charge fluctuations are proportional to its Gaussian curvature.
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In this Letter, I point out the apparently previously
unnoticed geometric degree of freedom of the fractional
quantum Hall effect (FQHE), that fundamentally distin-
guishes it from the integer effect, and will provide the
basis for a new description of its collective properties as
a fluctuating quantum geometry.

The simplest model Hamiltonian for N interacting
electrons bound to a two-dimensional (2D) planar ‘‘Hall
surface’’ traversed by a uniform magnetic flux density is

H ¼ XN
i¼1

1

2m
gab�ia�ib þ 1

A

X
q

VðqÞX
i<j

eiq�ðri�rjÞ: (1)

Here ri � rj ¼ ðrai � raj Þea, ½rai ; rbj � ¼ 0, are the relative

displacements of the particles on the 2D surface with
orthonormal tangent vectors ea, a ¼ 1, 2, and �ia ¼ ea �
�i are the components of the gauge-invariant dynamical
momenta, with commutation relations

½rai ; �jb� ¼ i�ij@�
a
b; ½�ia; �jb� ¼ i�ij�ab@

2=‘2B: (2)

I use Einstein summation convention: qar
a ¼ q � r (index

placement distinguishes real-space vectors ra from dual
(reciprocal) vectors qa); �

a
b is the Kronecker symbol, and

�ab ¼ �ab is the 2D antisymmetric Levi-Civita symbol. A
periodic boundary condition (PBC) can be imposed on a
fundamental region of the plane with area A ¼ 2�‘2BN�,
which restricts wave vectors q to the reciprocal lattice; N�

is an integer, and 2�‘2B is the area through which a London
magnetic flux quantum h=e passes.

The parameters of the Hamiltonian are: (1) a Galilean
effective mass tensormgab, where gab is a positive-definite
‘‘Galilean metric’’ with detg ¼ 1 (i.e., a unimodular met-
ric) and inverse gab, and m> 0 is the effective mass that
controls the cyclotron frequency !B ¼ @=m‘2B; (2) VðqÞ
which is the Fourier transform of an unretarded transla-
tionally invariant two-body interaction potential.

In principle, the real function VðqÞ is the Fourier trans-
form of the long-ranged unscreened Coulomb potential,
with the small-q behavior

lim
�!0

�Vð�qÞ ! e2

2"
ð~gabqaqbÞ�1=2; (3)

where ~gab is the inverse of a unimodular Coulomb metric
~gab, controlled by the dielectric properties of the surround-
ing 3D insulating media, while the large-q behavior of
VðqÞ is controlled by the quantum well that binds electrons
to the surface. The singularity of Vð0Þ does not affect
incompressibility, and can be screened by a metallic plane
placed parallel to the surface.
There is no fundamental reason for the Coulomb and

Galilean metrics to coincide, unless there is an atomic-
scale discrete (n > 2)-fold rotational symmetry of the
surface, and no tangential magnetic flux. I will argue that
the usual implicit assumption of rotational symmetry hides
key geometric features of the FQHE.
In the presence of the magnetic field, the canonical

degrees of freedom fri;pig are reorganized into two inde-
pendent sets, the dynamical momenta f�ig, which I will
call ‘‘left-handed’’ degrees of freedom, and the ‘‘guiding
centers’’ fRig, the ‘‘right-handed’’ degrees of freedom,

Ra
i ¼ rai �@

�1�ab�ib‘
2
B; ½Ra

i ;R
b
j �¼�i�ij�

ab‘2B; (4)

with ½Ra
i ; �jb� ¼ 0. The PBC further restricts the guiding-

center variables to the set of unitary operators �q;i ¼
expiq �Ri, which obey the Heisenberg algebra

�q;i�q0;i¼eið1=2Þq�q0‘2B�qþq0;i; q�q0 ��abqaq
0
b; (5)

reciprocal vectors q; q0 compatible with the PBC obey
ðexpiq� q0‘2BÞN� ¼ 1. The PBC can be expressed as

ð�q;iÞN� j�i ¼ ð�qÞN� j�i (6)

for all states in the Hilbert space, where �q ¼ 1 if 1
2 q is an

allowed reciprocal vector, and �q ¼ �1 otherwise. This

leads to the recurrence relation

�qþN�q
0;i ¼ ð�q0e

ið1=2Þq�q0‘2BÞN��q;i ¼ ��q;i: (7)

For a given particle label i, the set of independent operators
�q;i can be reduced to a set of N

2
� operators where q 2 BZ

takes one of a set of N2
� distinct values that define an

analog of a ‘‘Brillouin zone.’’ Let

PRL 107, 116801 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 SEPTEMBER 2011

0031-9007=11=107(11)=116801(5) 116801-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.116801


�2
q;q0 �

1

N�

X0

q00
eiq

00�ðq�q0Þ: (8)

(Primed sums are over the BZ.) Then �2
q;q0 ¼ 0 if q and q0

are distinct, and has the value N� if they are equivalent;
with this definition �2

q;q0 becomes 2��2ðq‘B � q0‘BÞ in the
limit N� ! 1, where �2ðxÞ is the 2D Dirac delta function.
It is convenient to choose the BZ so it has inversion
symmetry: q 2 BZ ! �q 2 BZ, and �q¼0;i is the identity.

The set of N2
� � 1 operators f�q;i; q 2 BZ; q � 0g are the

generators of the Lie algebra suðN�Þ. Both �q;i and also

(as noted by Girvin, MacDonald, and Platzman [1]) the
‘‘coproduct’’ �q ¼ P

i�q;i, obey

½�q; �q0 � ¼ 2i sin

�
1

2
q� q0‘2B

�
�qþq0 : (9)

In this form of the Lie algebra, the quadratic Casimir is

C2 ¼ 1

2N�

X0

q�0

�q��q ¼ NðN2
� � NÞ
2N�

þX
i<j

Pij; (10)

where Pij exchanges guiding centers of particles i and j.

For N ¼ 1, the �q;i form the N�-dimensional fundamental

(defining) suðN�Þ representation of one-particle states of a
Landau level, with C2 ¼ ðN2

� � 1Þ=2N�.

The high-field condition is defined by

@!B � 1

A

X
q

VðqÞfðqÞ2; fðqÞ ¼ e�ð1=4Þq2g‘2B ; (11)

where fðqÞ is the lowest-Landau-level form-factor, and
q2g � gabqaqb. In this limit, the low-energy eigenstates of

the model have all the particles in the lowest Landau level,
and can be factorized into a simple unentangled product of
states of right-handed and left-handed degrees of freedom:

j�0;�i ¼ j�L
0 ðgÞi � j�R

�i; (12)

where j�L
0 ðgÞi is a trivial harmonic-oscillator coherent

state, fully symmetric under interchange of the dynamical
momenta of any pair of particles, and parametrized only by
the Galilean metric gab; its defining property is

aij�L
0 ðgÞi¼0; ai/!aðgÞ�ia; i¼1; . . . ;N; (13)

where the complex unit vector !aðgÞ is obtained by solu-
tion of the generalized Hermitian eigenvector problem

!aðgÞ ¼ gab!
bðgÞ ¼ i�ab!

bðgÞ; !	
a!

a ¼ 1: (14)

In contrast, the nontrivial states j�R
�i are the eigenstates of

the ‘‘right-handed’’ (guiding-center) Hamiltonian

HR ¼ 1

2A

X
q

VðqÞfðqÞ2�q��q: (15)

The reduction of the problem by discarding ‘‘left-
handed’’ degrees of freedom, ‘‘frozen out’’ by Landau
quantization, makes numerical study of the problem by

exact diagonalization ofHR for finiteN, N� tractable. This
may also be characterized as a ‘‘quantum geometry’’ de-
scription: once the ‘‘left-handed’’ degrees of freedom are
removed, the notion of locality, fundamental to both clas-
sical geometry and Schrödinger’s formulation of quantum
mechanics, is absent. The commutation relations (4) imply
a fundamental uncertainty in the ‘‘position’’ of the parti-
cles, now only described by their guiding centers. A
Schrödinger wave function can only be constructed after
‘‘gluing’’ j�R

�i together with some j�Li, after which the
composite state can be projected onto simultaneous eigen-
states of the commuting set frig: e.g.,

��ðfrig; gÞ ¼ hfrigj�L
0 ðgÞi � j�R

�i: (16)

Note that the construction (16) of a Schrödinger wave
function involves an extraneous quantity ðgabÞ that is not
directly determined by j�R

�i itself, and thus is a nonprimi-
tive construction that does not represent j�R

�i in its purest
form. This suggests a reconsideration of the meaning of the
‘‘Laughlin state,’’ usually presented in the form of the
‘‘Laughlin wave function’’ [2], which is fundamental to
current understanding of the FQHE.
The conventional presentation of FQHE states is as an

N-particle Schrödinger wave function with the form

�ðfrigÞ ¼ FðfzigÞ
YN
i¼1

e�ð1=2Þz	i zi ; (17)

where zi ¼ !aðgÞrai =
p
2‘B. Such wave functions, formu-

lated in the ‘‘symmetric gauge,’’ obey (13) with ai � 1
2 zi þ

@=@z	i . The original Laughlin wave function [2] was the
polynomial

FðfzigÞ ¼ Fq
LðfzigÞ �

Y
i>j

ðzi � zjÞq; (18)

it was later adapted to a PBC [3] as (with Z ¼ P
izi)

Fq
L;�ðfzigÞ ¼

Y
i>j

wðzi � zjÞq
Yq
k¼1

wðZ� ak;�Þ; (19)

where wðzÞ is given in terms of an elliptic theta function:
wðzÞ ¼ 	1ð�z=L1jL2=L1Þ expðz2=2N�Þ, with L1L

	
2 �

L	
1L2 ¼ 2�iN� (the wave function is (quasi-) periodic

under zi ! zi þmL1 þ nL2). The additional q parameters
ak;� of (19), with

P
kak;� ¼ 0, characterize the q-fold

topological degeneracy of the Laughlin state with a PBC.
The Laughlin wave function was originally presented as

a ‘‘variational wave function,’’ albeit one with no contin-
uously tunable parameter, since q is an integer fixed by
statistics. Its initial success was that, as a ‘‘trial wave
function,’’ it had a lower Coulomb energy than obtained
in Hartree-Fock approximations, and explained the exis-
tence of a strong FQHE state at 
 � N=N� ¼ 1=3, but
not at 
 ¼ 1=2. In the wave function language, its defining
characteristic is that, as a function of any particle
coordinate zi, there is an order-q zero at the location of
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every other particle, which heuristically ‘‘keeps particles
apart,’’ and lowers the Coulomb energy.

Subsequent to its introduction, the Laughlin state’s es-
sential validity was further confirmed by this author’s
observation [4] that, at 
 ¼ 1=q, it is also uniquely char-
acterized as the zero-energy eigenstate of a two-body
‘‘pseudopotential Hamiltonian’’

HR ¼ Xq�1

m¼0

VmPmðgÞ; Vm > 0; (20)

where

PmðgÞ ¼ 1

N�

X
q

Lmðq2g‘2BÞe�ð1=2Þq2g‘2B�q��q; (21)

where LmðxÞ is a Laguerre polynomial. Numerical finite-
size diagonalization [5] for q ¼ 3 showed that this HR had
the gapped excitation spectrum of an incompressible
FQHE state, and that this gap did not close along a path
that adiabatically interpolated between it and the
Hamiltonian of the Coulomb interaction with ~gab ¼ gab.

This raises the question that does not seem to have been
previously considered: What if the ‘‘Coulomb metric’’ ~gab
and the ‘‘Galilean metric’’ gab do not coincide? The
‘‘pseudopotential’’ definition of the Laughlin state (as
opposed to the Laughlin wave function) defines a contin-
uously parametrized family of 
 ¼ 1=q Laughlin states
j�q

L;�ð �gÞi by
Pmð �gÞj�q

L;�ð �gÞi ¼ 0; m < q: (22)

The continuously variable parameter here is a unimodular
guiding-center metric �gab that is in principle distinct from
the Galilean metric gab, and is not fixed by the one-body
physics of the Landau orbits. Physically, it characterizes
the shape of the correlation functions of the Laughlin state.
If the shape of Landau orbits is used as the definition of
‘‘circular,’’ the correlation hole around the particles de-
forms to ‘‘elliptical’’ when �gab � gab.

If a wave function (13) is constructed by ‘‘gluing
together’’ j�L

0 ðgÞi with the ‘‘Laughlin state’’ j�Ri ¼
j�q

L;�ð �gÞi, it does not correspond to the Laughlin wave

function (19) unless �gab ¼ gab, as there is no longer a qth
order zero of the wave function when zi ¼ zj. Despite this,

I will not call j�q
Lð �gÞi with �gab � gab a ‘‘generalization’’

of the Laughlin state, but propose it as a definition of the
family of Laughlin states that exposes the geometrical
degree of freedom �gab hidden by the wave function-based
formalism. I argue that FQHE states should be described
completely within the framework of the ‘‘quantum geome-
try’’ of the guiding-center degrees of freedom alone, and
no ‘‘preferred status’’ should be accorded to the metric
choice �gab ¼ gab. If the states j�q

L;�ð �gÞi are used as varia-
tional approximations to the ground state of a generic HR

given by (15), �gab must be chosen to minimize the
correlation energy Eð �gÞ ¼ h�q

L�ð �gÞjHRj�q
L�ð �gÞi. If the

Coulomb (~gab) and Galilean (gab) metrics coincide, the
energy will be minimized by the choice �gab ¼ ~gab ¼ gab;
otherwise, �gab will be a compromise intermediate between
the two physical metrics.
A more profound consequence of the identification of

the variable geometric parameter �gab follows from the
observation that the correlation energy will be a quadratic
function of local deformations �gabðr; tÞ around the mini-
mizing value, whether or not this is equal to gab. This
unimodular metric, or ‘‘shape of the circle’’ defined by
the correlation function of the FQHE state, may be iden-
tified as the natural local collective degree of freedom of a
FQHE state (defined on length scales large compared to
‘B), and not merely a variational parameter.
In its finite-N polynomial form (18), the Laughlin state

j�q
LðgÞi is an eigenstate of LRðg; 0Þ where LRðg; rÞ ¼

gab�
abðrÞ generates rotations of the guiding centers about

a point r; here �abðrÞ ¼ �baðrÞ are the three generators of
area-preserving linear deformations [6] of the guiding
centers around r:

�abðrÞ ¼ 1

4‘2B

X
i

f�Ra
i ðrÞ; �Rb

i ðrÞg; (23)

with �Ra
i ðrÞ � Ra

i � r. Leaving r implicit, these obey the
noncompact Lie algebra [6]

½�ab;�cd� ¼ � i

2
ð�ac�bd þ �bd�ac þ a $ bÞ; (24)

which is isomorphic to soð2; 1Þ, slð2; RÞ, and suð1; 1Þ, with a
Casimir C2 ¼ � 1

2 det� � � 1
4 �ac�bd�

ab�cd.

FQHE states with 
 ¼ p=q can be simply understood
as condensates of ‘‘composite bosons’’ [7] which are
‘‘elementary droplets’’ of the incompressible fluid consist-
ing of p identical charge-e particles ‘‘bound to q London
flux quanta’’ (i.e., occupying q one-particle orbitals of the
Landau level), which behave as a boson under interchange.
This requires that the Berry phase cancels any bare statis-
tical phase: ð�1Þpq ¼ �p, where � ¼ �1ðþ1Þ for fermi-
ons (bosons). For a condensate of charge-pe objects, the
elementary fractionally charged vortex has charge �e	 ¼
�ð
e2=hÞðh=peÞ ¼ �e=q. This work aims to extend the
description of the ‘‘composite boson’’ by giving it (2D
orbital) ‘‘spin’’ and geometry.
Polynomial FQHEwave functions like (18) that describe

�N ¼ N=p ¼ N�=q elementary droplets are generically
eigenstates of LRðg; 0Þ with eigenvalue 1

2pq
�N2 þ �s �N ,

where �s is a variant of the so-called ‘‘shift’’ that I will
identify as a fundamental FQHE parameter, the guiding-
center spin, that characterizes the geometric degree of
freedom of FQHE states. It can also be obtained as the
limit �N ! 1 of

�s ¼ 1
�N

Xq �N�1

m¼0

�
mþ 1

2

�
½nmð �g; rÞ � 
�; (25)
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where nmð �g; rÞ, m 
 0 are the occupations of guiding-
center orbitals defined as the eigenstates of LRð �g; rÞ.

Note that the ‘‘superextensive’’ ( / �N2) contribution to
the eigenvalue derives from the uniform background
density contribution 
�2

q;0 to �q, and can be removed

(regularized) by defining �abðrÞ in the thermodynamic
limit N� ¼ q �N ! 1 using the limit of the q � 0 suðN�Þ
generators alone, which become continuous functions �ðqÞ
of q, with lim�!0�ð�qÞ ¼ 0. Then

�abðrÞ ¼ lim
�!0

�
� 1

2

1

ð�‘BÞ2
@

@qa

@

@qb
�ð�qÞe�i�q�r

�
: (26)

The Laughlin state j�q
Lð �gÞi is an eigenstate of �gab�

abðrÞ
with �s ¼ 1

2 ð1� qÞ. Note that for fermionic particles

(� ¼ �1), �s is odd under particle-hole transformations,
and vanishes when the Landau level is completely filled
(here q ¼ 1). A spin-statistics selection rule requires that

ð�1Þ2�sð�1Þ2s¼ð�1Þpq¼�p; ð�1Þ2s¼ð�1Þp; (27)

where s is the (orbital) ‘‘Landau-orbit spin’’ of the ele-
mentary droplet (s ¼ � 1

2 ;� 3
2 ; . . . for particles with

Landau index 0; 1; . . . ). The expression for �s may now be
inverted to define the (local) unimodular guiding-center
metric �gabðrÞ by the expectation value

lim
�N!1

1
�N
h�Rj�abðrÞj�Ri¼1

2
�s �gabðrÞ; det �g¼1; (28)

so if ��ðrÞ is the local droplet density, 1
2
�s ��ðrÞgabðrÞ is the

local density of the deformation generator.
The quantization of 2�s as an integer is a topological

property deriving from the incompressibility of FQHE
states. A simple picture that is reminiscent of Jain’s
notion of ‘‘quasi-Landau-levels’’ [8] supports this: the
‘‘elementary droplet,’’ with a shape fixed by �gabðrÞ, sup-
ports q single-particle orbitals with guiding-center spins
1
2 ;

3
2 ; . . . ;

q�1
2 . The way these are occupied by the p particles

of the droplet, determines the guiding-center spin of the
droplet as the actual total guiding-center spin of the con-
figuration, minus that ( 12pq) given by putting p=q particles

in each orbital. The repulsive exchange and correlation
fields of particles outside the droplet will give each of the
internal levels a mean energy for orbiting around an effec-
tive potential minimum at its center. The droplet will be
stable, with a quantized guiding-center spin that is adia-
batically conserved as the droplet changes shape, provided
there is a finite positive energy gap between the highest
occupied and lowest empty single-particle state in the
droplet. Collapse of this gap implies that the system has
become compressible with an unquantized or indetermi-
nate value of �s.

The geometrical degree of freedom exposed here also
suggests a new look at the problem of formulating a

continuum description of incompressible FQHE states.
Elsewhere, I will present a continuum description
combining Chern-Simons fields with the geometry field
�!aðr; tÞ, where �gab ¼ �!	

a �!b þ �!	
b �!a, but mention here

some fundamental formulas that emerge. First, the electric
charge density is given by pe ��ðrÞ, where ��ðrÞ is the local
elementary droplet (composite boson) density, and

��ðr; tÞ ¼ 1

2�pq

�
pe

@
BðrÞ þ �sKðr; tÞ

�
; (29)

Here BðrÞ is the externally imposed 2D (normal) magnetic
flux density, (assumed to be time independent, but not
necessarily spatially uniform), and Kðr; tÞ is the instanta-
neous Gaussian curvature of the unimodular guiding-

center-metric field �gabðr; tÞ, given byK ¼ �ab@a�
�g
b,�

�g
a ¼

�bc �!	
br �g

a �!c, where ��g
a is the spin connection gauge field

and r �g
a is the covariant derivative (Levi-Civita connection)

of �gab. This formula could perhaps have been anticipated
from the work of Wen and Zee [9], who considered cou-
pling Chern-Simons fields to curvature, but the curvature
they apparently had in mind was not the collective dynami-
cal internal degree of freedom described here, but that due
to placing the FQHE system on a curved 2D surface
embedded in 3D Euclidean space, as in formal calculations
of the FQHE on a sphere surrounding a monopole [3,4].
The second formula is that the canonical conjugate of the
geometry field �!aðrÞ is

�� a
�!ðrÞ ¼ @ �s ��ðrÞ�ba �!bðrÞ	; (30)

and, for uniform B, the momentum density is ��b
�!@a �!b �

@�sð� ��Þ��g
a, � �� ¼ �sK=2�pq. These formulas parallel those

of quantum Hall ferromagnets, with guiding-center spin
and Gaussian curvature replacing true electron spin and
Berry curvature. On large length scales, the elementary
charge e	 ¼ �e=q quasiparticles appear as rational cone
singularities of the metric field �gabðr; tÞ with localized
Gaussian curvature K ¼ �4�=ð2�sÞ.
In summary, the prevalent assumption of rotational in-

variance of FQHE fluids conceals a fundamental geometric
degree of freedom, the shape of their correlations, de-
scribed by a unimodular spatial metric field that exhibits
quantum dynamics.
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