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Scaling laws for ion temperature gradient driven turbulence in magnetized toroidal plasmas are

derived and compared with direct numerical simulations. Predicted dependences of turbulence fluctuation

amplitudes, spatial scales, and resulting heat fluxes on temperature gradient and magnetic field line pitch

are found to agree with numerical results in both the driving and inertial ranges. Evidence is provided to

support the critical balance conjecture that parallel streaming and nonlinear perpendicular decorrelation

times are comparable at all spatial scales, leading to a scaling relationship between parallel and

perpendicular spatial scales. This indicates that even strongly magnetized plasma turbulence is intrinsi-

cally three dimensional.
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Introduction.—Microscale turbulence is a ubiquitous
feature of the plasmas used for magnetic confinement
fusion. It is driven by kinetic instabilities feeding predomi-
nantly off a strong mean gradient in the ion temperature,
and it is responsible for the majority of particle and heat
transport observed in experiment. As with neutral fluid and
magnetohydrodynamic turbulence, exact analytical results
for kinetic plasma turbulence are rare, and numerical
simulations are costly. Phenomenological scaling laws
are thus useful for guiding simulation and providing gross
predictions of plasma behavior in a multidimensional
parameter space.

Experimental, numerical, and analytical results
(cf. [1–4]) have long been used to predict the dependence
of turbulent fluxes on the mean plasma gradients and on the
magnetic field configuration. However, scalings based on
empirical observations provide limited physical insight,
and the theoretical predictions, which are predominantly
based on linear or quasilinear arguments, are not suffi-
ciently detailed to be easily falsifiable. A more detailed
examination of the properties of kinetic plasma turbulence
has been conducted for scales smaller than the ion Larmor
radius [5–7], but it is the ion temperature gradient (ITG)
driven turbulence above the Larmor scale that is most
relevant for heat transport in fusion devices (cf. [8]).
Recent advances in plasma fluctuation measurements
[9,10] have provided turbulence spectra in this scale
range; direct numerical simulations have also calculated
spectra [11] and studied energy injection, transfer, and
dissipation [12,13].

In this Letter, we propose a phenomenological scaling
theory of ITG turbulence. A number of simple, physi-
cally motivated conjectures about the nature of this turbu-
lence are formulated and applied to obtain fluctuation
spectra from the driving scale to the ion Larmor scale.
We then derive predictions for the dependence of heat flux
on plasma current and ion temperature gradient. Numerical

results are presented to support our predictions and justify
our conjectures.
Gyrokinetic turbulence.—Plasma fluctuations in a strong

mean magnetic field are anisotropic with respect to the
mean field direction and have typical frequencies that
are small compared to the ion Larmor frequency, �i.
Such fluctuations are correctly described by the gyroki-
netic approximation [14]. It assumes ��i � 1, ‘?=‘k �
�i=L � 1, and �i=‘? � 1, where � is the fluctuation time,
�i the ion Larmor radius, L the characteristic length scale
of the mean dynamics, and ‘k and ‘? are the fluctuation

length scales parallel and perpendicular to the mean field,
respectively. Averaging over the fast Larmor gyration elim-
inates gyroangle dependence. For the remaining phase
space coordinates, we choose (R, E, �), where R is the
position of the center of a particle’s Larmor orbit,
E ¼ mv2=2 is the kinetic energy of a particle, and
� ¼ mv2

?=2B is the magnetic moment, with m particle

mass, v particle speed, v? its perpendicular component,
and B mean magnetic field strength.
We restrict our attention to ion scale turbulence with

�i=‘? < 1, for which the guiding center position R and
actual particle position r are approximately equal. The
equation describing the evolution of electrostatic fluctua-
tions in the absence of sonic flows is

@

@t

�
hs � Zse’

Ts

FM;s

�
þ ðvk þ vM;sÞ � rhs

þ vE � rðFM;s þ hsÞ ¼ C½hs�; (1)

where �fs ¼ hs � ðZse’=TsÞFM;s describes the distribu-

tion of particle positions and velocities for species s, t is

time, vM;s ¼ ðb̂=�sÞ � ðv2
kb̂ � rb̂þ ðv2

?=2ÞrB=BÞ is the
magnetic drift velocity, vE ¼ ðc=BÞb̂�r’ is the E�B

drift velocity, b̂ is the unit vector along the mean field, Zse
is the species charge, e is the proton charge, Ts is the
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temperature, FM;s is a Maxwellian distribution of veloc-

ities, and C is a Fokker-Planck collision operator.
The electrostatic potential ’ is obtained by imposing

quasineutrality,
P

sZsens ¼ 0, which can be written

X
s

Zs

Z
d3v

�
hs � Zse’

Ts

FM;s

�
¼ 0; (2)

where ns is species density. Assuming
R
d3vhi � v3

thhi,
where i denotes the main ion species and vth its thermal
speed, Eq. (2) gives hi=FM;i � Zie’=Ti.

Critical balance.—Because the turbulence we are con-
sidering is anisotropic, dimensional analysis alone is not
sufficient to determine scalings of the fluctuation ampli-
tudes with both ‘k and ‘?. To fix the ratio of ‘k to ‘?,
we make a conjecture known as critical balance [15]: The
characteristic time associated with particle streaming and
wave propagation along the mean field ‘k=vth is compa-

rable to the nonlinear decorrelation time at each scale. This
is motivated by the causality constraint: two points along
the mean field can be correlated only if information can
propagate between these points in the time it takes turbu-
lence to decorrelate in the plane perpendicular to the field.
It gives us a relation between parallel and perpendicular
spatial scales:

vth

‘k
� ��1

nl � vth

R

�2
i

‘x‘y
�‘; (3)

where �nl is the nonlinear decorrelation time, R is the
major radius of the torus, �‘ � ðe’‘=TÞðR=�iÞ, and
’‘ � ’ðrþ ‘Þ � ’ðrÞ. The subscripts x and y refer to
the coordinates in the plane perpendicular to the mean
field, with x labeling surfaces of constant magnetic flux
and y labeling field lines within a constant flux surface.

Outer scale.—We define the outer scale as the scale for
which the time associated with the linear drive is compa-
rable to the nonlinear decorrelation time:

��1
nl �!o	 � �ivth

‘oyLT

; (4)

where !	 is the frequency associated with the ITG drive,
LT is the ITG scale length, and o labels outer scale quan-
tities. The outer scale corresponds to the injection range,
which contains the turbulence amplitude peak. We con-
jecture that the characteristic parallel length at the outer
scale ‘ok is the parallel system size. In toroidal plasmas, this

is the distance along the mean field from the outside to the
inside of the torus. This distance, known as the connection
length, is qR, where the safety factor q measures the pitch
of the field lines. Thus,

‘ok � qR: (5)

Combining relations (3)–(5) provides a prediction for
the dependence of ‘oy on q and R=LT [16]

‘oy
�i

� qR

LT

: (6)

Since qR=LT � 1 in fusion plasmas, the ratio �i=‘
o
y � 1.

Thus, there is a range of scales between the outer scale
and the Larmor scale, below which kinetic damping
effects are expected to become significant.
The final piece of information necessary to determine

scalings for the fluctuation amplitude at the outer scale,
�o, is a relationship between ‘

o
x and ‘

o
y . We conjecture that

the length scales in the perpendicular plane, ‘x and ‘y, are

comparable at all scales: ‘x � ‘y � ‘?. Indeed, one might

argue that ‘x is set nonlinearly at the outer scale through
the shearing of radially extended eddies by zonal flow:
‘�1
x � ‘�1

y ðSZF�nlÞ, where SZF is the shearing rate at the

outer scale due to zonal flow. For strong ITG turbulence,
one expects SZF�nl � 1 [17], so that ‘x � ‘y is satisfied.

Taking ‘x � ‘y and using (3) and (6) in (4) gives

�o � ‘ox
�i

R

LT

� q

�
R

LT

�
2
: (7)

If we assume that the ion turbulent heat flux through
volume V, Qi � V�1

R
d3r

R
d3vðvE � rxÞðmiv

2=2Þ�fi,
is dominated by the contribution from the outer scale,
relations (6) and (7) imply a scaling for Qi:

Qi

niTivth

�
R

�i

�
2 � ~Qi � �i

‘oy
�2

o � q

�
R

LT

�
3
: (8)

The R=LT scaling is only valid for sufficiently large R=LT

because our simple analysis ignores the finite critical tem-
perature gradient associated with the ITG instability.
Inertial range.—We now consider the range of scales

between ‘o? and �i and conjecture that it is an inertial

range: There is no significant dissipation or driving
at scales between ‘o? and �i. This conjecture is to be

checked a posteriori. To determine the spectrum in
the inertial range, we identify the free energy W ¼
V�1

P
s

R
d3r

R
d3vTs�f

2
s=FM;s as a nonlinear invariant

[5] and consider scale-by-scale energy balance. Because
we are in an inertial range, the flux of free energy,W‘=�nl,
must be independent of ‘?:

1

niTi

W‘

�nl
�

�
�i

R

�
2 vth

R

�2
i

‘x‘y
�3

‘ � const: (9)

The dependence of �‘ on q and R=LT is obtained by
solving relation (9) for�‘, matching to�o [see (7)], using
relation (6), and assuming isotropy:

�‘ ��o

�
‘?
‘oy

�
2=3 � q1=3

�
R

LT

�
4=3

�
‘?
�i

�
2=3

: (10)

Parseval’s theorem relates�‘ to the Fourier coefficient�k,
giving a scaling for the 1D fluctuation spectrum, EðkyÞ,
defined so that

R
dky�iEðkyÞ ¼ V�1

R
d3r�2:
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EðkyÞ � ky�ij�kj2 � q2=3
�
R

LT

�
8=3ðk?�iÞ�7=3; (11)

where k? ¼ 2�=‘?. Using (10) to evaluate �nl, we find

!	 � ð‘?=‘o?Þ1=3��1
nl , confirming that the drive is subdo-

minant to the energy transfer in the inertial range [18].
Using relation (10) and applying critical balance (3)

gives the scaling of ‘k with ‘?:

‘k
qR

�
�
‘?
�i

LT

qR

�
4=3

: (12)

Converting this into a scaling for�‘, we obtain the parallel
structure function �2

‘ � qðR=LTÞ4ð‘k=RÞ.
Numerical results.—We next compare our scaling rela-

tions with numerical results obtained using the gyrokinetic
code GS2 [19]. We restrict our attention to electrostatic
fluctuations with perturbed electron density �ne=ne ¼
eð’� �’Þ=Te, with the overline denoting a flux surface
average. The magnetic geometry is as in the
widely benchmarked cyclone base case (CBC) [20]: un-
shifted, circular magnetic-flux surface, with r=R ¼ 0:18,
ŝ ¼ d lnq=d lnr ¼ 0:8, and R=Ln ¼ 2:2, where r is the
minor radius of the flux surface, and Ln is the density
gradient scale length. The parameters q and � � R=LT

were varied over several simulations to obtain numerical
scalings. These simulations employed a small amount of
upwinding along the magnetic field and hyperdissipation in
k? [21], cutting off the fluctuation spectra at k?�i ’ 1.

In Fig. 1, we show the q and � dependences of the

normalized ion heat flux ~Qi and of

‘oy
�i

� hðky�iÞ�1i ¼

P
kx;ky

ðky�iÞ�1j�ðkx; kyÞj2
P
kx;ky

j�ðkx; kyÞj2
; (13)

which is a good measure of the outer scale, provided the
spectrum is sufficiently steep. The simulations agree re-
markably well with our predicted scalings (6) and (8) [22].

The one-dimensional spectrum EðkyÞ is plotted vs ky�i

in Fig. 2 for several q and � values. At scales smaller than
the outer scale, all spectra follow the same power law,
which agrees with (11).
Our predictions for the critical balance scaling (12) are

tested in Figs. 3 and 4. The parallel correlation function,

C ðky;��Þ �
P
kx

�ðkx; ky; � ¼ 0Þ�	ðkx; ky; � ¼ ��Þ
P
kx

j�ðkx; ky; � ¼ 0Þj2 ;

(14)

is plotted in Fig. 3 for the simulation with q ¼ 4:2 and
� ¼ 6:9. Here � is the poloidal angle of the torus so that
��� ‘k=qR, with � ¼ 0 at the outermost point on the flux

surface. Our prediction (12) is given by the black line,
which fits the data. The qR-normalized correlation length,

��ðkyÞ �
R
dð��ÞCðky;��Þ, is plotted in Fig. 4 for mul-

tiple q and � values. At sufficiently large ky�i, the data

FIG. 1 (color online). (a) Expectation value of ky�i versus q�,
where � � R=LT . (b) Normalized heat flux versus q�3. Lines
show the predicted scalings (6) and (8).

FIG. 2 (color online). Electrostatic fluctuation spectra EðkyÞ
normalized to the predicted scaling (11) at the outer scale. We
have normalized ky�i using the outer scale relationship (6).

Asterisks denote the cyclone base case (q ¼ 1:4, � � R=LT ¼
6:9); circles and triangles denote simulations where q and � vary
from 2.8 to 7.0 and 10.0 to 17.5, respectively. The solid line gives
the predicted inertial range scaling (11).

FIG. 3 (color online). Correlation function, C (14). The solid

black line is �� / k�4=3
y , the critical balance scaling (12).
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follow the power law (12). Note that ��ðkyÞ peaks at a

value of approximately unity, in agreement with (5).
Sub-Larmor scales.—Using arguments similar to

those presented above, scalings of Eðk?Þ � k�10=3
? and

ðk?�iÞc � Do3=5 were obtained for the sub-Larmor scales
in [5] and verified numerically in [6]. Here the subscript c
denotes the cutoff wave number, and the Dorland number
Do � ð��i

�iiÞ�1 [5–7] is the kinetic plasma turbulence

analog of the Reynolds number, with ��i
the nonlinear

time at �i and �ii the ion-ion collision frequency. Using
relations (10) and (3), we find

ðk?�iÞc � Do3=5 � q1=5
�
R

LT

�
4=5

�
vth

�iiR

�
3=5

: (15)

Combining the results of [5] with those given here provides
a complete picture of the spectra of ITG turbulence from
the driving to dissipation scales, shown in Fig. 5.

Discussion.—The main results obtained in this Letter are
the following: a scaling of heat flux (8) and dissipation
scale (15) with q and R=LT , a power law scaling for the
electrostatic fluctuation spectrum (11), and a relationship

between parallel and perpendicular length scales (12). The
heat flux scaling, confirmed numerically (see Fig. 1), has a
stronger dependence on R=LT than is usually assumed by
reduced models for turbulent transport. While this has little
effect for near-marginal plasma turbulence, it may be
significant in the vicinity of steep gradient regions.
The power law prediction for the turbulence spectrum (11),

also confirmed numerically (see Fig. 2), appears to be con-
sistent with recent experimental fluctuation measurements
[10]. Along with the predictions for the dissipation scale
(15), the spectrum could be used to design large eddy simu-
lations for gyrokinetics [12] and to guide resolution choices
for direct numerical simulations. The critical balance con-
jecture (3) has proven to be robustly satisfied for the ITG
turbulence considered here (see Figs. 3 and 4). This indicates
that ITG turbulence is an inherently three-dimensional
phenomenon.
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[12] A. Bañon Navarro et al., Phys. Rev. Lett. 106, 055001
(2011).

[13] D. R. Hatch et al., Phys. Rev. Lett. 106, 115003 (2011).
[14] P. J. Catto, Plasma Phys. 20, 719 (1978).
[15] P. Goldreich and S. Sridhar, Astrophys. J. 438, 763 (1995);

S. V. Nazarenko and A.A. Schekochihin, J. Fluid Mech.

677, 134 (2011).
[16] Scaling (6) can also be obtained from linear analysis of the

slab ITG mode, as shown in [8].
[17] S. C. Cowley et al., Phys. Fluids B 3, 2767 (1991).

FIG. 5. Cartoon of the fluctuation spectrum from the outer
scale ðk?�iÞo [Eq. (6)], to the dissipation scale ðk?�iÞc
[Eq. (15)]. Scalings for k?�i > 1 are taken from [5].

FIG. 4 (color online). Scaling of poloidal correlation length
with q�ky�i for several simulations with varying q and � �
R=LT . The dashed line indicates the critical balance scaling (12).

PRL 107, 115003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 SEPTEMBER 2011

115003-4

http://dx.doi.org/10.1063/1.1645791
http://dx.doi.org/10.1063/1.1645791
http://dx.doi.org/10.1063/1.871261
http://dx.doi.org/10.1063/1.871261
http://dx.doi.org/10.1063/1.2169804
http://dx.doi.org/10.1063/1.2169804
http://dx.doi.org/10.1088/0741-3335/36/5/002
http://dx.doi.org/10.1088/0741-3335/36/5/002
http://dx.doi.org/10.1088/0741-3335/50/12/124024
http://dx.doi.org/10.1088/0741-3335/50/12/124024
http://dx.doi.org/10.1088/0067-0049/182/1/310
http://dx.doi.org/10.1088/0067-0049/182/1/310
http://dx.doi.org/10.1103/PhysRevLett.103.015003
http://dx.doi.org/10.1017/S002211201000371X
http://dx.doi.org/10.1016/S0370-1573(96)00056-7
http://dx.doi.org/10.1063/1.2895408
http://dx.doi.org/10.1088/0029-5515/46/9/S12
http://dx.doi.org/10.1063/1.3006086
http://dx.doi.org/10.1063/1.3006086
http://dx.doi.org/10.1103/PhysRevLett.102.165005
http://dx.doi.org/10.1103/PhysRevLett.102.165005
http://dx.doi.org/10.1103/PhysRevLett.106.055001
http://dx.doi.org/10.1103/PhysRevLett.106.055001
http://dx.doi.org/10.1103/PhysRevLett.106.115003
http://dx.doi.org/10.1088/0032-1028/20/7/011
http://dx.doi.org/10.1086/175121
http://dx.doi.org/10.1017/S002211201100067X
http://dx.doi.org/10.1017/S002211201100067X
http://dx.doi.org/10.1063/1.859913


[18] It is shown in [13] that there can be significant dissipation
above the outer scale, but that does not affect the inertial
range arguments given here.

[19] W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000).
[20] A.M. Dimits et al., Phys. Plasmas 7, 969 (2000).

[21] E. A. Belli, Ph.D. thesis, Princeton University, 2006.
[22] The heat fluxes shown in Fig. 1 are significantly larger

than those reported in [20] at large �. In order to obtain
our results, it was necessary to use much larger simulation
domains (� 300��i) than those considered in [20].

PRL 107, 115003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 SEPTEMBER 2011

115003-5

http://dx.doi.org/10.1103/PhysRevLett.85.5579
http://dx.doi.org/10.1063/1.873896

