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Experiments and simulations lend mounting evidence for the edge state hypothesis on subcritical

transition to turbulence, which asserts that simple states of fluid motion mediate between laminar and

turbulent shear flow as their stable manifolds separate the two in state space. In this Letter we describe

flows homoclinic to a time-periodic edge state that display the essential properties of turbulent bursting.

During a burst, vortical structures and the associated energy dissipation are highly localized near the wall,

in contrast with the familiar regeneration cycle.
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Introduction.—In recent years, the open problem of
subcritical transition to turbulence in shear flows has
seen a surge of interest, sparked by a rapidly increasing
ability to perform numerical simulations as well as by a
string of novel applications of dynamical systems theory.
The dynamical systems approach advocates the idea that
transitional shear flow is regulated by special solutions
with a relatively simple spatial structure. They may be
traveling waves, time-periodic solutions, or even solutions
chaotic in time. Such states live in between a stable laminar
state and stable, or metastable, turbulence. In simulations,
these special states can be identified by a shooting algo-
rithm in which initial data are iteratively refined to yield a
flow which neither laminarizes nor becomes turbulent, but
instead lingers on the ‘‘laminar-turbulent boundary’’ [1].
States on this boundary are necessarily unstable and con-
sequently they can only be observed as transient effects in
experiments [2]. Their relevance to the transition process
lies mainly in their stable and unstable manifolds in state
space. These determine how the fluid behaves as it tran-
sitions from near-laminar to turbulent states and vice versa.

A particularly interesting situation arises when the
laminar-turbulent boundary is formed—at least locally—
by the stable manifold of a traveling wave or periodic
solution, which is then called an ‘‘edge state.’’ Edge states
have now been computed for flow in channels as well as
pipes, with various numerical schemes and resolutions, and
there is some consensus that they are a robust feature of
subcritical shear flow in the overlap of the dynamical
systems and turbulence research communities [3].

Logically, the next step in this analysis would be to study
the stable manifolds of the edge states. Knowledge of the
geometry of these manifolds might open the door to the
application of control techniques, aiming at a forced lam-
inarization of the flow. Indeed, some results to this effect
have been obtained using linearization about an edge state
[4]. Little, if anything, is know about the global, nonlinear

structure of these separating manifolds, greatly reducing
the usefulness and predictive power of the edge state
hypothesis. The direct study of a separating manifold is
hard if not impossible, owing to its high (formally infinite)
dimensionality. In the current Letter, we study the two-
dimensional unstable manifold of an edge state in plane
Couette flow, using a novel computational algorithm, and
find that it contains two orbits which return to the edge
state along its stable manifold. We conjecture, that these
homoclinic orbits collide and disappear in a tangency
bifurcation at lower Reynolds number. Away from this
bifurcation, these orbits generically are transversal inter-
sections of the stable and unstable manifolds [5]. We
conjecture that their presence thus implies the existence
of an intricate tangle of these manifolds through the clas-
sical Smale-Birkhoff theorem [6]. This, in turn, may ex-
plain the observed chaotic dynamics of irregular turbulent
bursting.
Transitional plane Couette flow.—We consider plane

Couette flow at a Reynolds number of Re ¼ 400 in the
minimal flow unit of dimensions L�W �H, where Re is
based on half the velocity difference between the two walls
U=2 and half the wall separationH=2. The streamwise and
spanwise periods are ðL=H;W=HÞ ¼ ð2:76; 1:88Þ [7]. We
used resolutions of 16� 33� 16 as well as 32� 33� 32
grid points in the streamwise (x), wall-normal (y), and
spanwise (z) directions, respectively, and checked that
the behavior is qualitatively the same.
In this computational domain, the Nagata steady solu-

tion [8] does not exist [9]. Instead, the edge state in this
flow is a time-periodic variation of the laminar flow, which
shows weak, meandering streamwise streaks [4,10]. This
gentle unstable periodic orbit (UPO) has a single unstable
Floquet multiplier and thus its unstable manifold has
dimension two and its stable manifold has codimension
one in state space. Both the UPO and its unstable manifold
are contained in a subspace invariant under the spatial
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symmetries given by reflection in the midplane, followed
by a streamwise shift over L=2, and reflection in the
streamwise and spanwise direction, follow by a spanwise
shift over W=2. Consequently, we can impose these sym-
metries on the solutions without placing artificial restric-
tions on the fluid motion. At the higher resolution, the
number of degrees of freedom in the simulations is about
11 000.

Homoclinic orbit computation.—The unstable manifold
of the UPO can be computed using multiple-shooting orbit
continuation [11]. Essentially, this algorithm produces a
sequence of orbits, contained in the manifold, by arclength
continuation of a boundary value problem in time. Because
of the extremely sensitive dependence on initial conditions
in turbulent Navier-Stokes flow, we need to compose the
orbits of multiple segments, each not much longer than the
decorrelation time, i.e., the time scale of exponential di-
vergence of turbulent states of fluid motion which are
initially close. The results presented below use up to six
segments, the integration time on each interval staying
below 2 times the period T of the UPO and below 5 times
the decorrelation time.

As we compute a sequence of orbits, it may happen that
it converges to a homoclinic orbit, which separates the
unstable manifold into two components. Two such orbits
are shown in Fig. 1. In this projection on energy input and
dissipation rate, the UPO is the tiny loop labeled L. In the
background we have plotted the probability density
function (PDF) of transient turbulence, computed from

direct numerical simulations starting from random initial
conditions. In the transition to turbulence the homoclinic
orbits overshoot the maximum of the PDF, then pass close
to it on the way back to the UPO. They describe rare,
extreme events, and the flow structure along them remains
different from those associated with the regeneration cycle,
as described below.
We generically expect homoclinic orbits to approach the

UPO along its least stable subspace, also called the leading
stable subspace. How well the depicted orbits approximate
homoclinic connections can be quantified by measuring
two distances: one from the end point of the computed
orbits to the leading stable subspace at a point on the UPO
and one to this point along the leading stable subspace. We
found these distances to be of order 10�6 and 10�5,
respectively, in the energy measure, normalized by the
mean energy along the UPO. To test the robustness of
this result, we have recomputed the homoclinic orbits
with a smaller integration time step and a varying number
of shooting intervals.
The flow structure of bursting.—Figure 2 shows the time

evolution of flow structures along the smaller homoclinic
orbit at the six phases indicated in Fig. 1. The structures
along the larger homoclinic orbit are qualitatively the
same. In the early stage (phase a) the spanwise standing-
wave motion of the streak is enhanced, so that the stream-
wise dependence, i.e., the three dimensionality, of the
streak gradually becomes significant. At the same time
the streak grows in the wall-normal direction. Such behav-
ior is a consequence of the linear instability of the UPO,
which has an eigenstructure characterized by disturbances
of the streamwise velocity and vorticity highly localized on
the crest and the valley of the streak.
As time progresses, the simultaneous spanwise oscilla-

tion and wall-normal growth of the streak exceed a critical
level for bursting. There appear thin layers of extremely
high vorticity between the wall and the crest and the valley
of the streak, in which intense quasistreamwise vortex
tubes are generated to induce high shear and thereby high
energy dissipation (phase b). The quasistreamwise vortices
of opposite signs of the streamwise vorticity align follow-
ing the oscillation of the streak in the spanwise direction.
Then the streak is rapidly deformed, while the second pair
of quasistreamwise vortices appears on the crest and valley,
and align with the first pair to form an array which moves
fast on the crest or valley in the spanwise direction
(phase c). During this streak deformation and vortex gen-
eration intense energy dissipation is observed in the thin
layers between the wall and the crest or the valley of the
streak. Streamwise vortices similar to those found in the
regeneration cycle [7] and the corresponding strong UPO
[10] also appear on the flanks of the streak. However, the
streamwise vortices on the crest and valley of the streak
are not observed in the near-wall regeneration cycle, and
therefore we can say that these vortices are typical flow

FIG. 1 (color). Projection of the homoclinic orbits onto energy
input and dissipation rate, normalized by their value in laminar
flow, �e and ��. The piece of orbit leaving the edge state L is shown
in red and the one approaching it in blue. In the background, the
PDF of transient turbulence is shown in gray scale. The labels
(a)–(f) correspond to the snapshots in Fig. 2 and the green orbit
segment is a spontaneous bursting event for comparison of the
streamwise velocity profiles, see Fig. 4. The inset shows the
dissipation rate of energy as a function of time along part of
the homoclinic orbits.
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structures of bursting with significant energy dissipation.
Actually, an inspection of the turbulent state of plane
Couette flow has shown that in bursting events of intense
dissipation there appear similar vortex arrays on the crest
and valley of the highly grown streak, which are associated
with strong local dissipation. As shown in Fig. 3, the
intense local dissipation (represented by green isosurfaces)
observed around the crest and valley of the streak in Fig. 2
(phases c and d) contributes to the rapid increase of total
energy dissipation (see Fig. 1). The identified high-
dissipation regions occupy less than 10% of the spatial

domain but account for over 40% of the energy dissipation,
implying that strong energy dissipation in the bursting
event can be attributed to flow structures localized in the
region around the crest and the valley of the streak shown
by the green surfaces in Fig. 2. As time goes on, the highly
deformed streaks are broken down (phase d), and then the
streak and vortices decay rapidly (phase e) as the flow
finally returns to a quiescent state close to the gentle
UPO (phase f).
As reported by Kawahara and Kida [10], transient ap-

proaches of a turbulent state to relatively quiescent states

FIG. 2 (color). Visualization of flow structures in six phases on the smaller homoclinic orbit, labeled as in Fig. 1. Gray corrugated
isosurfaces of the null streamwise velocity represent streamwise streaks. Isosurfaces at 0:2ðU=HÞ2 for the second invariant of a
velocity gradient tensor are shown in red and blue and denote vortex tubes of clockwise and counterclockwise streamwise-vorticity
component. Green isosurfaces show the local energy-dissipation rate at 20 times the value �� in laminar flow. In the midplane x ¼ L=2
the cross-stream velocity is shown, related to that at x ¼ 0 by a spanwise reflection under the flow symmetry.
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of low energy input and dissipation are followed by burst-
ing events with intense energy dissipation. The green curve
in Fig. 1 is an example of such a spontaneous bursting
event. In Fig. 4 we compare the streamwise velocity profile
of this event to that of the homoclinic orbits and of turbu-
lence, dominated by regeneration cycle dynamics. This
comparison confirms that the physical processes of burst-
ing are different from those of the regeneration cycle and
that spontaneous bursting events tend to follow the homo-
clinic orbits in phase space.

Kawahara and Kida [10] suggested the interpretation of
bursting in terms of a heteroclinic cycle between the gentle
UPO and a UPO embedded in turbulent flow. The present
analysis instead suggests that the process of the bursting
may be related to homoclinic orbits.

Conclusion.—The existence of orbits homoclinic to the
edge state implies that the geometry of the laminar-
turbulent boundary is rather complex and we can expect
to find a manageable approximation to it only locally. At
the same time, it generically implies the existence of
infinitely many UPOs which correspond to flows with
arbitrarily many, arbitrarily long, near-laminarization
events. It is natural then to think of turbulent shear flow
as governed by a large chaotic attractor which comprises
both UPOs in the turbulent regime, which reproduce the
regeneration cycle [10], and UPOs which reproduce near-
laminarization and bursting events. Physically, these burst-
ing events are very different from the regeneration cycle.
The streamwise vortices appear on the crest and valley of
the streaks rather than on their flanks, and the larger part of
the energy dissipation takes place in the near-wall, high
strain region. The homoclinic solution presented here adds
a new element to the elucidation of turbulence by means
of dynamical systems theory, namely, that of temporal

localization. Since it has been computed in a minimal
flow unit, it cannot capture spatial intermittency.
Recently, several equilibrium and traveling wave solutions
exhibiting spatial localization have been found [12]. A
clear goal for the near future is to find periodic or connect-
ing orbits which combine the two forms of localization.
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[9] J. Jiménez et al., Phys. Fluids 17, 015105 (2005).
[10] G. Kawahara and S. Kida, J. Fluid Mech. 449, 291 (2001).
[11] L. van Veen, G. Kawahara, and A. Matsumura, SIAM J.

Sci. Comput. 33, 25 (2011).
[12] T.M. Schneider, J. F. Gibson, and J. Burke, Phys. Rev.

Lett. 104, 104501 (2010); U. Ehrenstein, M. Nagata, and
F. Rincon, Phys. Fluids 20, 064103 (2008).

 0

 0.2

 0.4

 2.5  3  3.5

fr
ac

tio
n

FIG. 3 (color). Blue: temporal variation of energy-dissipation
(solid curve) and volume (dashed curve) fractions in the high-
dissipation region bounded by the green surfaces in Fig. 2, with
phases b-e as in that figure. Green: corresponding data for the
spontaneous bursting segment.
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FIG. 4 (color). Comparison of streamwise velocity profiles,
averaged over the streamwise and spanwise directions. The black
line represents the turbulent time average. The bursting (green)
and homoclinic (red, blue) profiles were averaged along the part
of the orbit where �= �� > 4, i.e., around phase c in Fig. 2.
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