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In this Letter, an N-body theory for the radiative heat exchange in thermally nonequilibrated discrete

systems of finite size objects is presented. We report strong exaltation effects of heat flux which can be

explained only by taking into account the presence of many-body interactions. Our theory extends the

standard Polder and van Hove stochastic formalism used to evaluate heat exchanges between two objects

isolated from their environment to a collection of objects in mutual interaction. It gives a natural

theoretical framework to investigate the photon heat transport properties of complex systems at the

mesoscopic scale.
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The photon heat tunneling between two bodies has
attracted much attention in the past decades since it has
been predicted that the heat flux (HF) can exceed, at the
nanoscale, the far field limit set by Planck’s black-body
law by several orders of magnitude [1,2]. This discovery
has opened the way to promising technologies for energy
conversion and data storage as, for example, near-field
thermophotovoltaics [3,4] and plasmon-assisted nanopho-
tolitography [5]. This dramatic increase is, generally
speaking, due to the contribution of evanescent modes,
which are not accounted for in the Stefan-Boltzmann law
and become important only if the distance between the
objects is smaller than the thermal wavelength [6]. The
detailed mechanisms which lead to such an enhancement
are nowadays for a number of geometries and materials
well understood [6–24], and recent experiments [25–29]
have confirmed all theoretical predictions both qualita-
tively and quantitatively.

However, some questions of fundamental importance
remain unsolved in complex mesoscopic systems. Indeed,
so far, only the HF between two objects [6–9] out of
equilibrium has been considered, but what does the heat
transport for a collection of individual objects in mutual
interaction look like? The collective effects in such
many-particle systems have not been explored yet,
although it is of prime importance for understanding the
different heat propagation regimes in disordered systems,
determining the thermal percolation thresholds in random
nanocomposite structures, and studying thermal effects
due to the presence of localized modes in such systems.

Inside a discrete system of bodies maintained at different
temperatures, the local thermal fluctuations give rise to
oscillations of partial charges which, in turn, radiate their
own time-dependent electric field in the surrounding
medium. These thermally generated fields interact with

the nearby bodies and modify through different cross in-
teractions all these primary fields to generate secondary
fields which in turn affect the radiated fields and so on.
Generally speaking, this problem belongs to the vast cate-
gory of many-body problems which constitute the theo-
retical framework of numerous branches of physics
(celestial mechanics, condensed matter physics, atomic
physics, and quantum chemistry). A general theoretical
framework to treat the many-body problem of nonradiative
photon heat transport does not yet exist. In this Letter, we
introduce a self-consistent theory to describe heat transfers
inside thermally nonequilibrated discrete systems. After
deriving the HF exchanged between two individual objects
in mutual interaction inside an N-body system, we inves-
tigate the thermal conductance between a couple of parti-
cles versus the position of a third object inside a three-body
system. We highlight some emergent phenomena which
specifically result from many-body interactions. In addi-
tion, we will show that, for systems with at least three
objects at different temperatures, one can actively control
the heat flow in nanoscale junctions; i.e., one has a thermal
heat transfer transistor.
To start, let us consider a discrete set of N objects

located at positions ri and maintained at different tempera-
tures Ti with i ¼ 1; . . . ; N. Suppose that the size of these
objects is small enough compared with the smallest
thermal wavelength �Ti

¼ c@=ðkBTiÞ so that all individual

objects can be modeled to simple radiating electrical
dipoles. For metals, one has also to include the magnetic
dipole moments due to the induction of eddy currents
[11]. Such an extension of our approach is straightforward,
so for convenience we will consider electric dipoles only.
The Fourier component of the electric field at the fre-

quency ! [with the convention f̂ðtÞ ¼ R
d!
2� fð!Þe�i!t]

generated at the position ri by the fluctuating part pfluc
j of
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the electric dipole moment of the particle j which is
located at rj reads

E ij ¼ !2�0G
ijpfluc

j ; (1)

with �0 the vacuum permeability and Gij � Gðri; rj;!Þ
the dyadic Green tensor (i.e., the propagator) between the
particles i and j inside the set of N particles. On the other
hand, by summing the contribution of fields radiated by
each particle, the dipolar moment induced by the total field
on the ith particle is given by

p ind
i ¼ "0�i

X
j�i

Eij; (2)

where �i is the particle’s polarizability and "0 is the
vacuum permittivity. Then, the power dissipated inside
the particle i at a given frequency ! by the fluctuating
field Eij generated by the particle j can be calculated from

the work of the fluctuating electromagnetic field on the
charge carriers as

P j!i;! ¼ 2Reh�i!pind
i ð!Þ �E�

iji; (3)

where the brackets represent the ensemble average.
Using relations (1) and (2) between the dipole moments
and the fluctuation dissipation theorem, i.e., hp�

j;�pi;�i ¼
2 �0

! Imð�jÞ�ð!; TjÞ����ij, we find after a straightforward

calculation that

P j!i ¼ 3
Z 1

0

d!

2�
�ð!; TjÞT i;jð!Þ; (4)

introducing the transmission coefficient (TC)

T i;jð!Þ ¼ 4

3

!4

c4
Imð�iÞImð�jÞTr½GijGijy�: (5)

In order to present the HF in an obvious Landauer-like
manner [30,31], we rewrite the HF in terms of the con-
ductance Gi;j ¼ @P j!i=@Tj so that P j!i ¼ Gi;j�T. Then

we find

P j!i ¼ 3

�
�2k2BT

3h

�
�T i;j�T; (6)

where �T i;j ¼
R
dxfðxÞT i;jðxÞ=ð�2=3Þ is the mean TC

[30] with fðxÞ ¼ x2 expð�xÞ=½expðxÞ � 1�2. This expres-
sion generalizes the Meir-Wingreen-Landauer-type for-
mula [32] for photon HF in N-body systems. In the case
of two particles (N ¼ 2), one can easily show that

T i;jð!; dÞ 2 ½0; 1� and therefore �T i;j 2 ½0; 1� as well.

Hence the conductance between two dipoles is limited by
3 times the quantum of thermal conductance �2k2BT=ð3hÞ
[33]. In other words, only three channels contribute to the
HF between two dipoles, namely, the channels due to the

coupling of the three components pj;� with the same three

components pj;� (i.e., the same polarization). Of course, by

adding further particles this limit cannot be exceeded,
whereas the HF can be increased or decreased with respect
to the case of two particles. Nevertheless, the number of
channels increases if electric multipoles [34,35] as well as
the magnetic moments [11] come into play.
Now, for calculating the Green’s function (GF) for a

system of N particles, we use the set of 3N self-consistent
equations [36]

Eij ¼ �0!
2Gij

0 p
fluc
j�i þ

!2

c2
X
k�i

Gik
0 �kEkj (7)

for i ¼ 1; . . . ; N with the free space GF Gij
0 ¼ expðikrijÞ

4�rij
�

½ð1þ ikrij�1

k2r2ij
Þ1þ 3�3ikrij�k2r2ij

k2r2ij
r̂ij � r̂ij� the vacuum GF de-

fined with the unit vector r̂ij � rij=rij, rij being the vector

linking the center of dipoles i and j, while rij ¼j rij j and 1
stands for the unit dyadic tensor. Inserting relation (1) into
this system leads to the GF

G1k

..

.

GNk

0
B@

1
CA ¼ ½1�A0��1

G1k
0

..

.

Gðk�1Þk
0

0
Gðkþ1Þk

0

..

.

GNk
0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(8)

for k ¼ 1; . . . ; N with

A0 ¼!2

c2

�

0 G12
0 �2 � � � G1N

0 �N

G21
0 �1

. .
. . .

. ..
.

..

. . .
. . .

.
GðN�1ÞN

0 �N

GN1
0 �1 � � � GNðN�1Þ

0 �N�1 0

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(9)

With these relations and Eq. (4) at hand, it is possible to
determine the interparticle HF in a system of N particles
out of equilibrium.
Let us now apply this theoretical formalism to describe

some emerging many-body effects. To this end, we con-
sider the simplest possible configuration where such effects
occur that is a triplet of particles. We consider only the
interparticle HF between particles 1 and 2 separated by a
distance 2l in the presence of the third particle. Here, we
assume that T1 ¼ 300 K and T2 ¼ T3 ¼ 0. The interpar-
ticle HF is then given by
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’12ð2l; r3Þ ¼ P 1!2 � P 2!1 ¼ P 1!2: (10)

In this case, the dyadic GF reads

G 21 ¼ D�1
213

�
G21

0 þ B213 !
2

c2
D�1

31 G
31
0

�
(11)

with D213 ¼ D21 � !4

c4
B213D�1

31 B
312, D21 ¼ 1� !4

c4
G21

0 �1

G12
0 �2, and B213¼G23

0 �3þ!2

c2
G21

0 �1G
13
0 �3. Some nu-

merical results are shown in Figs. 1 and 2. We plot the
resulting interparticle HF ��

12 between particles 1 and 2 in
the presence of body 3 normalized to the HF for two
isolated dipoles. In both figures the position of the particles
for which the interparticle HF is calculated is fixed, but the

position of the third particle is changed. It can be seen that
for some geometric configurations the HF mediated by the
presence of the third particle can be larger than the value
we usually measure for two isolated dipoles. In particular,
we observe an exaltation of HF of about 1 order of magni-
tude when the third particle is located between the two
other particles, i.e., when all three particles are aligned.
Hence, the HF between two dipoles can dramatically be
increased when inserting a third particle in between. Note
that the three-body system described above represents a
photon heat transistor where the heat HF between two
particles can be actively controlled by the presence of a
third particle. This could be achieved through classical
atomic force microscopy manipulation techniques.
In order to understand some of the physics behind this

enhancement mechanism, we show in Fig. 3 the TC
T 2;1ð!Þ for two isolated particles and three aligned parti-

cles for a frequency range around the surface phonon
resonance of the particles and for different interparticle
distances. First of all, it can be observed that the TC shows
different resonances where it is close to 1. These reso-
nances can be found from the expression for the GF of
the N-body system in Eq. (8) by evaluating detð1�
A0Þ ¼ 0, where A0 is defined in Eq. (9). In fact, for the
considered systems of two or three aligned particles, one
yields three configurational resonances [37]. Two of these
resonances are degenerate because of the rotational invari-
ance around the alignment axis (for more details, see
Ref. [38]). Apart from these configurational resonances,
we have the surface mode resonance at ! ¼ !sr with
�ð!srÞ ¼ �2, which becomes dominant for large distances
so that one sees only one resonance in this case. On the
other hand, for distances close to the particle radius, the
multiple interactions become dominant and several reso-
nances show up in the TC. Note that the dipole model [7,8]
is valid only for l > 2R. Now, from Fig. 3, it is clear that at

FIG. 1 (color online). Normalized HF exchanged between two
SiC spherical particles maintained at T1 ¼ 300 K (left particle)
and T2 ¼ 0 K (right particle) with respect to the position r3 ¼
ðx3; y3Þ of a third SiC particle of same radius and T3 ¼ 0 K for
(a) 2l ¼ 600 nm and (b) 2l ¼ 800 nm. The HF is normalized by
the HF exchanged between two isolated dipoles in the same
thermal conditions. The dark zone with a negative HF corre-
sponds to the region which cannot be occupied by the third
particle. For the sake of clarity, we consider here that all particles
are identical (100 nm radius) and their electric polarizability
given by the simple Clausius-Mossotti form [39] � ¼ 4�R3 ��1

�þ2 ,

R denoting the particles radius. The dielectric permittivity of
particle is described by a Drude-Lorentz model.

FIG. 2 (color online). Normalized HF between two spherical
particles of the same radius with respect to the position of a third
one, which is equidistant to both particles (T1 ¼ 300 K,
T2 ¼ T3 ¼ 0 K).
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long separation distances the coupling between two dipoles
becomes more efficient in presence of a third mediator than
without, so that the HF enhancement can be attributed to a
three-body effect that is a resonant surface mode coupling
mediated by the third particle. Nevertheless, the absolute
value for the interparticle HF is still far away from the
theoretical upper limit.

In conclusion, we have introduced a theoretical frame-
work to investigate photon heat transport in mesoscopic
systems where strong electromagnetic interactions exist.
In particular, a Meir-Wingreen-Landauer-type formula for
the radiative HF through N-body interacting photon re-
gions has been derived. A detailed study of three-body
systems has allowed to identify a many-body exaltation
mechanism of HF due to configurational resonances. This
effect could be used to improve, for example, the perform-
ance of near-field thermophotovoltaic conversion devices
[3,4], by placing nanoparticles on the surface of photovol-
taic cells.
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