
Large-Deviation Approach to Space-Time Chaos

Pavel V. Kuptsov1,* and Antonio Politi2,3

1Department of Technical Cybernetics and Informatics, Saratov State Technical University,
Politekhnicheskaya 77, Saratov 410054, Russia

2CNR - Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
3Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom

(Received 15 February 2011; published 8 September 2011)

In this Letter, we show that the analysis of Lyapunov-exponent fluctuations contributes to deepen our

understanding of high-dimensional chaos. This is achieved by introducing a Gaussian approximation for

the large-deviation function that quantifies the fluctuation probability. More precisely, a diffusion matrix

D (a dynamical invariant itself) is measured and analyzed in terms of its principal components. The

application of this method to three (conservative, as well as dissipative) models allows (i) quantifying the

strength of the effective interactions among the different degrees of freedom, (ii) unveiling microscopic

constraints such as those associated to a symplectic structure, and (iii) checking the hyperbolicity of the

dynamics.

DOI: 10.1103/PhysRevLett.107.114101 PACS numbers: 05.45.�a, 05.10.Gg, 05.40.�a, 05.45.Jn

Introduction.—There are two complementary reasons to
investigate the links between statistical mechanics and
space-time chaos. On the one hand, (equilibrium) statisti-
cal mechanics provides an effective framework to describe
the evolution of nonlinear systems. This is achieved
through the introduction of the so-called thermodynamic
formalism [1] and is based on a suitable partition of the
phase space and the consequent interpretation of the time
axis as an additional spatial direction. This approach
proved to be very effective in the characterization of low-
dimensional systems and has contributed to establish, e.g.,
the relationship between Lyapunov exponents on the one
side and fractal dimension, or the Kolmogorov-Sinai en-
tropy, on the other [2]. A generalization of the approach to
spatially extended systems is formally possible, but almost
unfeasible, because of the difficulty to construct appropri-
ate phase-space partitions [3]. On the other hand, a detailed
understanding of high-dimensional chaos can help
bridging the gap between microscopic and macroscopic
evolution, thereby laying the foundations for a dynamical
theory of (non)equilibrium statistical mechanics. In this
perspective, the estimation of a suitable large-deviation
function appears to be the most promising strategy.
This idea proved already fruitful in the context of a sto-
chastic dynamics, where some exact calculations have
been performed in simple but nontrivial models of
interacting particles [4,5]. In the context of chaotic sys-
tems, instead, this approach is the core of the Gallavotti-
Cohen fluctuation theorem [6], which is proved under
the hypothesis that, in the thermodynamic limit, the evo-
lution of typical dynamical systems is effectively
hyperbolic.

In this Letter, we propose an approach that can contrib-
ute to make progress along both directions, without intro-
ducing any assumption of the underlying dynamics. More

precisely, we suggest to study the fluctuations of the
Lyapunov exponents (LEs) along the lines of the multi-
fractal theory [2]. One of the advantages of dealing with
LEs and their fluctuations (in the long-time limit) is that
they are dynamical invariants; i.e., they are independent of
the parametrization of the phase space. An exact imple-
mentation in generic nonlinear models is out of the ques-
tion. Nevertheless, here we show that useful information
can be extracted by working within the Gaussian approxi-
mation. For instance, we show that the (cross)correlations
among all pairs of LEs and, in particular, their scaling
behavior with the system size allow estimating the strength
of the effective interactions that spontaneously emerge
among the various degrees of freedom. Notice that our
analysis goes beyond the usual extensivity assessment of
space-time chaos that is linked to the existence of a limit
Lyapunov spectrum. In fact, we will see that the fluctua-
tions of a chain of contiguous noninteracting systems are
substantially different from those of a typical chain of
interacting systems. Finally, our approach allows testing
the hyperbolicity of the underlying dynamics by
(i) comparing the results obtained for different definitions
of the Lyapunov exponents, (ii) testing phenomena like the
dominance of Oseledec splitting [7], and (iii) quantifying
dimension variability [8].
Theory.—Let �ið�Þ denote the ith expansion factor over

a time � in tangent space. The rate �i ¼ �ið�Þ=� is the so-
called finite-time Lyapunov exponent (FTLE), which, in
the infinite-time limit, converges to the LE ��i (here and
in the following, overlines denote time averages). For finite
�, FTLEs fluctuate around the asymptotic values. The
theory of large deviations suggests that, in the long-time
limit, the probability distribution Pð�; �Þ (where � ¼
f�1; �2; . . . ; �Ng and N is the number of degrees of free-
dom) scales with � as
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Pð�; �Þ /�!1 e�Sð�Þ�; (1)

where Sð�Þ is the positive-definite large-deviation function
whose minimum (equal to zero) is achieved in correspon-
dence of the LEs ��i. S has been mostly studied in contexts
where � reduces to a scalar variable �, as it happens for
low-dimensional chaos, where it is known that Sð�Þ is itself
a dynamical invariant [2]. This is because FTLE fluctua-
tions originate from passages of a chaotic trajectory in the
vicinity of periodic orbits with different stability proper-
ties. There is no reason to doubt that dynamical invariance
is lost upon increasing the dimensionality of the phase
space.

If a system is the Cartesian product of uncoupled vari-
ables, S is the sum of functions, each dependent on a single
�i, but interactions bring new terms. Although determining
S is too ambitious a task, relevant features can be uncov-
ered by expanding it around the minimum �� and retaining
the first (quadratic) nonzero term,

Sð�Þ � 1
2ð�� ��ÞQð�� ��Þy (2)

(y denotes the transpose), an approximation that is equiva-
lent to assuming a Gaussian distribution. In practice, it is
preferable to consider the symmetric matrix D ¼ Q�1. In
fact, the elements Dij can be directly determined by esti-

mating the (linear) growth rate of the (co)variances of
½�ið�Þ � ��i��,

Dij ¼ lim
�!1½�ið�Þ�jð�Þ � ��i

��j�
2�=�: (3)

There are three basic definitions of FTLEs. One can com-
pute them (i) by repeatedly applying the Gram-Schmidt
orthogonalization procedure to a set of linearly indepen-
dent perturbations (backward or Gram-Schmidt Lyapunov
vectors), (ii) by performing this procedure along the nega-
tive time axis (forward Lyapunov vectors), and (iii) by
making reference to the covariant Lyapunov vectors [9].
In the infinite-time limit, the three methods produce
identical LEs. For finite but long times, as long as FTLE
fluctuations are connected to ‘‘visits’’ of different periodic
orbits, the three definitions should be again equivalent. In
fact, we have systematically verified that the correlations
computed with the methods (i) and (iii) are basically
indistinguishable as soon as the diffusive asymptotic be-
havior sets in [10]. This result provides a first evidence of
the effective hyperbolicity of the underlying dynamics. In
fact, it implies that the differences induced by the presence
of homoclinic tangencies are so rare that they do not affect
our perturbative analysis.

The information contained in D can be expressed in a
compact form by determining its (positive) eigenvalues �k

(k ¼ 1; N), which represent the fluctuation amplitudes
along the most prominent directions. Some of the eigen-
values may turn out to vanish because of more or less
hidden constraints. For instance, in the presence of a
constant phase-space contraction rate,

P
i�i ¼ const and

all f�ig n-tuples lie in the same hyperplane. As a result,
one eigenvalue of D is equal to zero; its corresponding
eigenvector is perpendicular to the hyperplane itself.
Another instructive case is that of symplectic dynamics:
since the LEs come in pairs whose sum is zero, the fluctu-
ations of the negative LEs are perfectly anticorrelated
with those of the positive ones, so that Dij has an addi-

tional symmetry S, i.e., DNþ1�i;j ¼ Di;Nþ1�j ¼ �Dij.

Altogether, the possible existence of zero eigenvalues re-
inforces the choice of studying D rather than its ill-defined
inverse Q. Moreover, since the matrices Q and D are
diagonal in the same basis and the eigvenvalues of Q are
the inverse of those of D, we can infer the scaling behavior
of the former ones from that of the latter. One must simply
be careful and discard the redundant variables, associated
to the zero eigenvalues. In particular, since, as we shall see,
�k / 1=N, the large-deviation function S turns out to be
proportional to the number N degrees of freedom; i.e., it is
an extensive quantity.
Model analysis.—We start the numerical analysis by

studying a chain of Hénon maps [11]

xnðtþ 1Þ ¼ a� ½xnðtÞ þ "DxnðtÞ�2 þ bxnðt� 1Þ; (4)

where Dxn � ðxn�1 � 2xn þ xnþ1Þ is the discrete
Laplacian operator. We have chosen a ¼ 1:4, b ¼ 0:3,
and " ¼ 0:025 and used periodic boundary conditions
(the same conditions have been chosen in the other models,
too). The results are shown in Fig. 1. In panel (a), we report
the self-diffusion coefficients Dii (see the symbols).
The clean overlap of the scaled curves indicates that
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FIG. 1 (color online). Diffusion coefficients in a chain of
Hénon (symbols) and symplectic (lines) maps. In all panels,
squares, diamonds, plusses, and circles refer to N ¼ 40, 80, 160,
and 320, respectively, while dotted, dashed, and solid lines
correspond to N ¼ 32, 64, and 128, respectively. The results
have been obtained by iterating the chain over 5� 106 time
steps. Panel (a) contains the diagonal elements, � ¼
ði� 1=2Þ=N; panel (b) refers to the column j ¼ 2N=5, � ¼
i=N; and panel (c) refers to the eigenvalues of D, ordered from
the largest to the smallest one, � ¼ k=N.
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Diið�Þ � 1=N0:85. This means that the LEs self-average in
the thermodynamic limit. The singular behavior exhibited
by Diið�Þ for � ! 1 follows from the different scaling
behavior of the first and Nth exponent which decrease as

1=
ffiffiffiffi
N

p
. In Fig. 1(b), we plot Dij along the column j ¼

2N=5. The off-diagonal terms decrease as 1=N, so that the
matrix D becomes increasingly diagonal in the thermody-
namic limit. Finally, the eigenvalue spectrum �k [see
Fig. 1(c)] decreases like 1=N. This implies that the eigen-
values of Q are proportional to N; the large-deviation
function is an extensive observable. Moreover, the 1=�
singularity at � ¼ 0 means that the leading eigenvalue �1

does not decrease; i.e., there exists one direction in the
phase space along which fluctuations survive, even in the
thermodynamic limit. The physical meaning of this feature
is to be understood. Finally, the eigenvalue spectrum ex-
hibits a remarkable and unexpected property: half of it is
equal to zero. A close inspection of the whole correlation
matrix reveals that this is because D is S symmetric. By
further investigating the Jacobian matrix J, we have dis-
covered that it indeed satisfies the symplecticlike condition
JAJT ¼ �bA (see [12]). Unlike the similar case studied in
Ref. [13], here A is a generic antisymmetric matrix de-
pending on t. Altogether, these results indicate that LEs
come in pairs, such that ��i þ ��Nþ1�i ¼ lnb.

Next, we have studied a chain of symplectic maps,

pnðtþ 1Þ ¼ pnðtÞ þ K½sin��nþ1ðtÞ � sin��nðtÞ�;
�nðtþ 1Þ ¼ �nðtÞ þ pnðtþ 1Þ; (5)

where both pn and �n are defined modulus 2� and ��n ¼
�n � �n�1. The model has been simulated for K ¼ 4.
In Fig. 1 (see the lines), one can notice that the overall
scenario is very similar to that one observed in the chain of
Hénon maps, including the behavior of the diagonal
elements. The major difference concerns DNN , which,
instead of decreasing faster, now decreases slower than in
the bulk.

Finally, we have considered a chain of Stuart-Landau
oscillators as an example of a continuous-time dissipative
system. The model can be viewed as the spatial discretiza-
tion of a complex Ginzburg-Landau equation, a prototyp-
ical model of space-time chaos. The evolution equation
writes

_a n ¼ an � ð1þ icÞjanj2an þ ð1þ ibÞh�2Dan: (6)

We have fixed c ¼ 3, b ¼ �2, and h ¼ 1=2, which corre-
sponds to a regime of amplitude turbulence [14]. In this
model, we cannot draw clear conclusions on the scaling
behavior of the D elements because of larger finite-size
corrections (see Fig. 2). However, the eigenvalues behave
quite similarly to the two previous cases: (i) the overall
spectrum scales as 1=N, (ii) the maximum eigenvalue
remains finite for increasing N, and (iii) a large fraction

of the spectrum is nearly equal to zero. In this case, the
singularity is due to the appearance (beyond a certain �
value) of pairs of degenerate LEs [14] which fluctuate
synchronously. Notice also the drops of the diffusion co-
efficient indicated by arrows 1 and 2 in Fig. 2(a) that are
discussed below.
Discussion.—The common property exhibited by all of

the three models is the 1=N scaling of the eigenvalue
spectrum of the diffusion matrix D. This implies that the
matrix Q and, thereby, the large-deviation function S are
proportional to the number of degrees of freedom; i.e., S is
an extensive observable. It is interesting to notice that such
a property holds in spite of the long-range correlations that
are revealed by the strength of the off-diagonal terms of D
(in all models, they provide a substantial contribution to the
scaling behavior of the eigenvalues).
Next, we discuss some physical implications of the

structure of the large-deviation function S. We start from
the occurrence of occasional changes in the order of the
FTLEs, a feature that is related to the concept of dominated
Oseledec splitting [7]. The splitting is dominated with
index i if there exists a finite �0 such that �i > �iþ1 for
all � > �0 [15]. This property implies the absence of
tangencies between the corresponding Oseledec subspaces
identified by the ith vector and the subsequent one [7]. The
probability of order exchanges can be inferred from the
fluctuations of ��i ¼ �i � �iþ1. Its diffusion coefficient
Ki can be expressed in terms of the D elements, Ki ¼
Dii þDiþ1;iþ1 � 2Di;iþ1. Since the probability of an

exchange of FTLEs is equal to the probability Pw
i of

observing a negative ��i, we have, in the Gaussian
approximation,

Pw
i � 1

2
erfc

�
ð ��i � ��iþ1Þ

ffiffiffiffiffiffiffiffi
�

2Ki

s �
; (7)
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FIG. 2 (color online). Diffusion coefficients in a chain of
Stuart-Landau oscillators. In all panels, circles and squares refer
to N ¼ 64 and 128, respectively. The panels are organized in the
same way as in Fig. 1. The column reported in (b) corresponds to
j ¼ N=2.
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where ‘‘erfc’’ is the complementary error function. The
analysis of the three models reveals that, in the bulk, Ki

scales always as 1=N (see Fig. 3) [16]. Since the distance
between consecutive LEs scales also as 1=N (this follows
from the very existence of a limit LE spectrum), one can

conclude that Pw
i � erfcðci

ffiffiffiffiffiffiffiffiffi
�=N

p Þ=2 for some ci � 0. This
means that, in the large N limit, order exchanges occur
with a finite probability and no dominated splitting is
present. However, in the Hénon maps, at � ¼ 1, there is
a gap in the Lyapunov spectrum. Therefore, since KN

vanishes (as 1=
ffiffiffiffi
N

p
), the probability of order exchanges

goes to zero, indicating that stable and unstable manifolds
are mutually transversal and the system effectively hyper-
bolic. The absence of a gap in the Lyapunov spectrum of
the symplectic maps prevents us from drawing a similar
conclusion in that model. In the Stuart-Landau chain, Pw

i

vanishes close to arrow 2 [see Figs. 2(a) and 3(b)], since
Ki ¼ 0 (and ��i � ��iþ1), thus implying that the splitting is
dominated [17]. This suggests the existence of two trans-
versal subspaces, consistently with the claim that the at-
tractor is embedded in a supporting manifold containing
the physical modes [14,15]. Since the dimension of the
supporting manifold is even larger than the Kaplan-Yorke
dimension (equal to 0:27N), we must conclude that the
overall dynamics is not hyperbolic.

Now, we analyze the invariant measure, introducing the

expansion rate LðDÞ ¼ PD
i �i of a generic volume of

dimensionD, over a time �. The Kaplan-Yorke dimension

Df is obtained by imposing �LðDfÞ ¼ 0 [18]. Under the

assumption of small fluctuations, one can express the

diffusion coefficient �D
� of D in terms of the analogous

coefficient �L ¼ PD
i;j Dij ofL, by linearizing the function

�LðDÞ around Df. This leads to �D
� ¼ �L=ð ��Df

Þ2. The
dimension fluctuations �D

" can now be estimated by in-
voking an ansatz similar to Eq. (1) which, in the Gaussian

approximation, is written as PðDÞ / "ðD�DfÞ2=ð2�D
" Þ,

where the box size " must be linked to the time variable.
By following Ref. [19], it is natural to assume that

" � expð�j ��Df
j�Þ, thereby obtaining �D

" ¼ �D
�
��Df

¼
�L= ��Df

. In the chain of Hénon maps, �D
" � 0:12N; i.e.,

dimension fluctuations are extensive. This implies that
the naı̈ve idea is wrong and it is necessary to build a
more refined picture to refer to high-dimensional chaotic
attractors.
Conclusions.—We have shown that a fluctuation analy-

sis can deepen our understanding of high-dimensional
chaos. The main result is the discovery of a subtle form
of extensivity, i.e., the proportionality of the large-
deviation function to the system size. This result is non-
trivial, since it arises in a context of effective long-range
correlations and there are even examples of stochastic
models, where the large-deviation function is not extensive
[5]. As for the discrepancy between the scaling exponent
of the diagonal elements and of the eigenvalues of D
(0.85 vs 1), it is necessary to study larger sizes to decide
whether it is due to finite-size corrections. Moreover, our
approach provides a new way of investigating the hyper-
bolicity of a given dynamics (including dimension varia-
bility), although we are aware that the last word can be said
only by going beyond the perturbative approach described
in this Letter. The method introduced in Ref. [20] to
identify trajectories with unprobable stability properties
makes this perspective not so remote.
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