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Quantumphenomena present inmany experiments signify nonclassical behavior, but do not always imply

superior performance. Quantifying the enhancement achieved from quantum behavior needs careful

analysis of the resources involved. We analyze the case of parameter estimation using an optical interfer-

ometer, where increased precision can in principle be achieved using quantum probe states. Common

performancemeasures are examined and some are shown to overestimate the improvement. For the simplest

experimental casewe compare the different measures and exhibit this overestimation explicitly.We give the

preferred analysis of these experiments and calculate benchmark values for experimental parameters

necessary to realize a precision enhancement. Our analysis shows that unambiguous real-world enhance-

ments in optical quantum metrology with fixed photon number are yet to be attained.
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Quantum-enhanced technologies such as quantum com-
puting, cryptography and metrology utilize nonclassical
behavior of quantum systems to surpass the performance
of their classical analogs. Often signatures of quantum
behavior such as violation of a Bell inequality, photon
antibunching, or sub-Poissonian number statistics are ob-
served in an experiment. In some cases, their presence may
be sufficient to ensure superior performance of the quan-
tum protocol over the classical. There are situations, how-
ever, in which quantum behavior does not necessarily
imply performance beyond classical limits and further
analysis is necessary to ensure improvement.

Quantum sensing employs quantum probes to estimate a
parameter with precision beyond what is possible with
classical resources [1]. Analyzing the limits on precision
is of both practical and fundamental interest, requiring
careful accounting of the necessary resources to compare
classical and quantum protocols. Entangled states of
multiple particles are a critical component in enabling
quantum enhancement in many situations [2], as are
detectors that extract maximum information about the
parameter of interest [3]. Calculating the precision that
can be achieved for fixed resources provides a basis for
comparing quantum and classical protocols. Recent work
has shown that practical imperfections such as loss,
decoherence, state-preparation, and detector inefficiency
decrease the enhancement of quantum metrology proto-
cols [4–6]. Thus poor enumeration, which distorts the
resources used and hence the enhancement obtained, is
problematic.

Several proof-of-principle experiments aimed at
quantum-enhanced parameter estimation have been per-
formed to date [7]. Many utilize nonclassical signatures
in detection outcomes to indicate improved precision.
However, as we will show, this is insufficient to demon-
strate increased precision beyond the classical limit and

further information is necessary to accurately compare
quantum and classical strategies.
In this Letter, we address the gap between proofs-of-

principle and issues of practice by examining a quantum
sensor based on optical interferometry. We develop a
bound on the achievable precision based on the well known
classical and quantum Fisher information. In contrast to
previous analyses however, we incorporate imperfections
at all stages of the experiment. When these imperfections
are present, we show that quantum enhancement can be
overestimated by improper resource accounting. To experi-
mentally demonstrate this we construct a source of her-
alded entangled states, generating with it the simplest
quantum states which ideally lead to improved precision,
and examine the behavior of different enhancement
measures including supersensitivity [8]. The heralded state
is fully characterized, including all photon number sub-
spaces, using a novel tomographic technique. This allows
us to account for all the consumed resources. We show that
this state, although beating previously applied classical
limits, cannot beat our bound.
To estimate the phase� in a two-mode interferometer, a

state �̂ is launched into it, evolves into the state �̂ð�Þ due to
interaction with the phase-shifting element, and a measure-
ment is performed at the sensor output. The phase � is
estimated from the outcomes of � repeated experimental
trials. We define the average number of photons at the
interferometer input, N ¼ hn̂i, and the total number of
experimental trials, �, necessary to achieve a given level
of phase precision, ��, as the resources. For fixed resour-
ces, we then compare the precision of the quantum and
classical approaches and the approach with the smallest
phase uncertainty is thus the better strategy.
Two effects attributed to quantum behavior in interfer-

ometry are phase super-resolution and phase supersensi-
tivity. Phase super-resolution, the sinusoidal variation of an
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N-fold detection signal as a function of interferometer
phase � with an N-times increase in oscillation rate, can
be observed using only classical input states of light and
projective measurements [8]. Recently, the visibility of
such super-resolving fringes was shown to be able to
distinguish between quantum and classical input states of
a Mach-Zehnder interferometer [9]. This signature of
quantum behavior does not, however, quantify improved
performance beyond classical interferometry.

Phase supersensitivity, a commonly employed measure of
performance, is defined as reduced phase uncertainty com-
pared to that possible with classical resources [8]. The model
in [8] incorporates experimental imperfection through ‘‘effi-
ciency’’ and visibility parameters �p and V, by means of a

phenomenological model of anNd-fold detected coincidence
signal. Here,�p is the proportion of the input state �̂ that can

lead to an Nd-fold detection event. The visibility is required
to satisfy �pV

2Nd > 1 in order for the measurement to be

regarded as ‘‘supersensitive.’’ However, this assumes unit
sensor transmission and perfectly efficient detectors. It
includes only imperfect state preparation; with Nd ¼ N,
the number of input photons. In fact, the most common
experimental situation is that Nd < N so that the resources
consumed are significantly underestimated. Claims of preci-
sion beyond the classical limit that utilize this measure must
therefore be interpreted carefully.

In general, the precision of the phase estimate is limited

by the Cramér-Rao bound (CRB) [3], �� � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Fð�Þp

,
where Fð�Þ ¼ P

jð1=pjð�ÞÞj@pjð�Þ=@�j2, is the Fisher

information (FI). The probability pjð�Þ corresponds to

an outcome j of a measurement. Fð�Þ is bounded from
above by the quantum Fisher information (QFI), FQ, found

by maximizing Fð�Þ over all physical measurements.

Hence the quantum Cramér-Rao bound (QCRB), �� �
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�FQð�Þ
q

, depends only on the input state and channel,

independent of measurement [3].
Ideally, the QCRB of N uncorrelated photons leads to

the standard quantum limit �� � ��SQL ¼ 1=
ffiffiffiffiffiffiffi

�N
p

,

equivalent to the precision attained with a coherent state
of unknown phase with average photon number j�j2 ¼ N.
When quantum input states are employed, the best attain-
able precision is given by the so-called Heisenberg limit
�� � ��HL ¼ 1=

ffiffiffi

�
p

N which is achieved by the N00N
state [7–10]. Note that to reach this precision, an appro-
priate optimal detection scheme with unit efficiency must
be used. However, if the sensor has finite transmissivity �,
assumed equal in both interferometer arms, the classical
strategy is bounded by the standard interferometric limit
(SIL) �� � ��SIL ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi

��N
p

[4]. N00N states are ex-
tremely susceptible to loss; removal of even one photon
results in a phase-insensitive state. The QFI for N00N
states through the same channel is thus scaled by the
probability that all photons are transmitted, �N , giving a

QCRB of �� � 1=
ffiffiffiffiffiffiffiffiffiffi

��N
p

N.

For N00N states, an optimal measurement is projection

onto j��i ¼ ðjN; 0i � j0; NiÞ= ffiffiffi

2
p

, where jm; ni denotesm
(n) photons in each mode of the interferometer. This
measurement set has three possible outcomes: j ¼ � (de-
tection of j��i) and j ¼ 0 (otherwise). In practice, it is
difficult to realize single-mode sensors and this may lead to
nonideal interference due to unmeasured distinguishing
information. Measurement outcomes therefore typically
have probabilities p�ð�Þ ¼ f½1� V cosðN�Þ�=2 and
p0ð�Þ ¼ 1� pþð�Þ � p�ð�Þ, leading to a CRB �� �
��min ¼ 1=

ffiffiffiffiffiffi

�f
p

NV [11]. Here, f ¼ �pð��dÞN , where�d

is detector efficiency, and V is the interference visibility
accounting for multimode states and detectors. The state
is said to exhibit super-resolution if p�ð�Þ oscillates N
times the applied phase. To surpass the SIL requires
��min < ��SIL, leading to a threshold visibility

Vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�=fN
q

; (1)

which is equivalent to that in [8] with � ¼ �d ¼ 1 and
N ¼ Nd. A state is said to exhibit supersensitivity if
V � Vth, and the classical precision limit is surpassed.
The FI and QFI analyses give a straightforward method

to quantify the resources consumed in an experiment and
compare quantum with classical strategies. The QFI re-
veals whether or not the classical limit could be beaten in
principle using a particular state and channel, while the FI
reveals whether or not it can be beaten with the addition of
a particular measurement. To ascertain the best perform-
ance of a given quantum strategy, one must therefore know
the density matrix �̂ of the input state, when it is prepared,
as well as the device transmission and detector efficiency,
giving N, �, the QFI, and the FI, respectively. In our case,
�̂ will be obtained through state tomography and � by
heralded state preparation.
A common practice is to ‘‘post-select’’ on particular

measurement outcomes and neglect the occurrence of
others, including when nothing is detected at the output.
This amounts to setting �p, �, �d to 1 and N ¼ Nd. This

neglects both � and the true N, significantly underestimat-
ing the exponentially growing number of trials [11] and
information from neglected measurement outcomes.
To experimentally examine realistic quantum sensors,

we implement the simplest case, employing two-particle
states, in which increased precision can be shown. We use
an optical sensor design based on a heralded two-photon
Holland-Burnett (HB) state [11,12]. HBðN ¼ 2kÞ states
are prepared by launching k photons in both input ports
of a 50:50 beam splitter. The HB(2) state provides the
laxest constraints on sensor transmissivity and detection
efficiency [4,5]. Furthermore, the optimal measurement for
phase estimation using HB states can be implemented with
realistic number-resolving detection [5]. The QCRB of a

HB state in the lossless case is �� � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�NðN=2þ 1Þp

which, for large N, has Heisenberg scaling that differs only
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by a constant factor. With loss this state retains phase
sensitivity and precision enhancement far better than
N00N states [13]. Indeed, the QCRB for the HB state
approximately follows the optimum value for a wide range
of �, �d and N [4,5].

The scheme used to generate heralded HB states is
shown in Fig. 1(a). A polarization-based N-photon HB
state is obtained by combining two orthogonally polarized
k ¼ N=2-photon Fock states at a polarizing beam splitter
[11]. The required Fock states are generated by two
parametric down-converters (PDC), where k photons in
one mode of each PDC are heralded by detecting k photons
in the other mode. The PDCs are designed to produce
spectrally disentangled modes [14] to avoid the compro-
mise of state purity due to heralding, which is crucial for
high-visibility interferometry. As spectral filtering is not
required to increase the state purity, the preparation effi-
ciency is determined solely by the system loss. In principle
this source, with the use of photon-number-resolving
heralding detectors [15], generates ideal HB states of
arbitrary N.

The quality of the heralded Fock states used to generate

the HB(2) state, ðj2; 0i � j0; 2iÞ= ffiffiffi

2
p

, was tested by means

of Hong-Ou-Mandel interference between heralded single
photons [Fig. 2(a)]. The theoretical fit gives a visibility of
90� 3% (80� 3% raw), setting a lower bound on the
input photon purity and distinguishability, and an upper
bound for the multiphoton fringe visibility in Eq. (1). The
residual impurity is partly intrinsic [14] and partly due to
imperfect compensation of the optical fiber birefringence.
We reconstruct the full heralded state thorough state

tomography using the experimental arrangement shown
in Fig. 1(c) [11,16]. Population in lower photon number
subspaces arises from loss so that coherences between
subspaces of different photon number can be neglected.
Figure 3(a) shows the reconstructed density matrix. The
heralded state has populations of 0.686, 0.277, and 0.037 in
the zero-, one-, and two-photon subspaces giving an aver-
age photon number of 0.35. This state has an overlap of
0.031 with the ideal two-photon HB state, while the renor-
malized two-photon subspace has an overlap of 0.85.
The heralded HB states are launched into a polarization

Mach-Zehnder interferometer, PMZI in Fig. 1(b), which
introduces a controllable relative phase between the two
modes. Figure 2(b) shows the detection count-rate phase
dependence for heralded single-photon states (dashed)
and heralded HB(2) states (solid). Theoretical fits show
visibilities of 90:9� 0:5% and 80:6� 1:5% (76:4� 1:4%
raw), respectively. The latter is consistent with the mea-
sured state purity.
For N ¼ 2, HB and N00N states are equivalent and

Eq. (1) can be applied. Using post-selection, only data
resulting in twofold outcomes are recorded, � and f are set

to 1, and N¼2, yielding a threshold visibility Vth¼1=
ffiffiffi

2
p

.
The measured fringe visibility significantly exceeds this
bound and so by this analysis we achieve supersensitivity,
beating the SQL. If we renormalize the post-selected
photon number subspace and use �p ¼ 0:85 while still

neglecting � and �d, we obtain Vth ¼ 0:77. Our measured
fringe visibility also exceeds this threshold, again demon-
strating supersensitivity and beating the SQL. Since the

FIG. 1 (color online). Setup for generating and characterizing
heralded HB states. (a) State generation based on two parametric
down-converters (PDC). Half- (H) and a quarter-wave plates (Q)
after each polarizing beam splitter (PBS) adjust the polarizations
to combine photons at a fiber polarizing beam splitter (FPBS).
Coincidence detection between heralding avalanche photodiodes
(Herald APDs) signals HB state preparation at the output of the
FPBS. (b) PMZI applies phase � between �45� polarizations.
Coincidence detection between the APDs implement optimal
measurement for HB(2) state. (c) Tomography uses a quarter-
(Q) and half-wave plate (H) followed by a PBS. Outputs
are coupled into single-mode fiber (FC) with the reflected mode
split by a 50:50 fiber beam splitter (FBS) for partial number
resolution.

FIG. 2 (color online). Quantum interference of heralded pho-
tonic states. (a) Hong-Ou-Mandel interference between two
heralded single photons as a function of delay, �. (b) Setting
� ¼ 0 and scanning the PMZI phase shows two-photon (solid)
and single-photon (dashed) interference. Error bars are derived
from Poissonian statistics and contributions from multiple PDC
pair emissions are removed.
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whole state including lower photon number subspaces is
known however, the correct �p, given by the overlap of the

reconstructed state with the HB(2) state, can be calculated

as �p ¼ 0:031. Applying the bound in [8] leads to Vth ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffi

�pNd

p ¼ 4:02, which is unphysical. So, by this analysis,

we cannot beat the SQL. The above thresholds are based on
post-selection and renormalization or neglect both channel
transmissivity and detector efficiencies, significantly under-
estimating the resources required to reach a given precision.
Heralding a characterized state affords a complete reckoning
of the resources used by counting all states put into the
interferometer. f and � can then be estimated experimen-
tally, allowing Vth to be calculated according to Eq. (1).
f is determined from the ratio of fourfold coincidences to

heralding events, giving f ¼ 0:0047� 0:0001 and ��d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

f=�p

q

¼ 0:39. For our detector �d ¼ 0:45, � ¼ 0:87, re-

sulting in Vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�=Nf
p ¼ 9:57, an even higher threshold

on visibility, showing that we cannot beat the SIL. This
explicitly shows that to unequivocally demonstrate perform-
ance beyond the classical limit, all system inefficiencies
must be characterized.

Equation (1) and the analysis above are based on the FI
and are valid only for N00N states. To assess the value of a
state for metrology, however, the QFI can be calculated and
compared to the SIL. For our state, FQ ¼ 0:079, giving
a QCRB �� � 3:56=

ffiffiffi

�
p

. For a classical state with the
same average photon number as the reconstructed state,
��SIL ¼ 1:81=

ffiffiffi

�
p

, showing again that, despite the impli-
cations of the post-selected and renormalized analyses
above, the classical limits to precision can never be sur-
passed with this state and arbitrary measurements.

Going beyond the classical performance limit with
realistic quantum sensors requires stringent bounds on

throughput, probe-state preparation and detection efficien-
cies. For heralded N00N states, f ¼ �pð��dÞN must sat-

isfy f � �=NV2. For the ideal two-photon situation
(V ¼ 1) this implies �p��

2
d � 1=2. This benchmark for

heralded two-photon states provides a challenging goal to
achieve to surpass the classical limit. Even for perfect
detectors (�d ¼ 1), this would require �p� � 1=2. Con-

versely, perfect preparation and transmission (�p� ¼ 1)

implies that detectors must have �d � 1=
ffiffiffi

2
p

. To our
knowledge, the above criteria have not yet been demon-
strated together in a single experiment.
Quantum photonics using feasible laboratory technol-

ogy has the potential to surpass the performance of classi-
cal techniques. Nonclassical behavior may be present in an
experiment, but does not necessarily imply improved per-
formance beyond classical limits. Here we have laid out an
explicit approach to compare experimental results for pre-
cision metrology, which requires complete knowledge of
the input state and number of experimental trials. We have
demonstrated a scalable method to generate heralded en-
tangled states of light for precision phase estimation, a key
step to demonstrating a real-world improvement over the
SQL. By fully characterizing this source we have calcu-
lated the ultimate precision that can be obtained and in
doing so we have put bounds on the sensor parameters
required for quantum-enhanced phase estimation to be
viable.
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