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Continuous variable entanglement between two modes of a radiation field is usually studied at optical

frequencies. Here we demonstrate experiments that show the entanglement between microwave photons

of different energy in a broadband squeezed beam. We use a Josephson parametric amplifier to generate

the two-mode correlated state and detect all four quadrature components simultaneously in a two-channel

heterodyne setup using amplitude detectors. Analyzing two-dimensional phase space histograms for all

possible pairs of quadratures allows us to determine the full covariance matrix, which is in good

agreement with the one expected for a two-mode squeezed state.
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State tomography for more than a single mode of a
radiation field allows us to characterize photon sources
that display entanglement between propagating photons.
At optical frequencies, well-established multimode state
reconstruction techniques based on single photon counters
exist. These have already allowed for a variety of experi-
ments that demonstrated entanglement and the EPR para-
dox for continuous variables states [1–5]. A well-known
representative for the class of optical entangled states is the
two-mode squeezed vacuum [6], which has been used as a
resource for continuous variable quantum computation,
cryptography, and teleportation experiments [7–9].

In the microwave domain, state tomography experi-
ments have recently been realized for single itinerant
field modes [10–12]. In addition, multimode state recon-
struction for intracavity fields of two spatially separated
cavities has been demonstrated [13]. Here we present
heterodyne state tomography techniques that allow for
the state reconstruction of two itinerant modes. We apply
these techniques to reconstruct the covariance matrix of a
two-mode squeezed state generated in a Josephson para-
metric amplifier.

Noise squeezing at microwave frequencies has been
demonstrated for these amplifiers in the degenerate [14]
as well as in the nondegenerate case of parametric ampli-
fication [15]. The general interest in parametric amplifica-
tion [16,17] has steadily grown in the recent past
[14,18,19], because it allows for investigating the quantum
properties of microwave radiation [20], superconducting
qubits [21], and nanomechanical oscillators [22] at high
signal-to-noise ratios.

In this Letter, we present experimental state tomography
for two output field modes of a parametric amplifier which
generates entangled photon pairs of frequencies !1=2�
and !2=2� from the input vacuum noise by annihilating
two pump photons 2!p ¼ !1 þ!2. The corresponding

field modes a1 and a2 emitted from the single broadband
resonator mode, which are separated in frequency space
[23,24], are described by a two-mode squeezed state.

Alternatively, one can analyze squeezing correlations be-
tween two spatially separated modes by sending two
squeezed states through a balanced beam splitter [11] or
by using two parametrically coupled resonators with differ-
ent output ports [15]. Here, we first describe the measure-
ment setup, discuss the device parameters, and characterize
the system as a phase-preserving amplifier. We then mea-
sure the covariance matrix and reconstruct the Gaussian
Wigner function of the four quadrature components [7].
Our parametric amplifier (Fig. 1) is realized as a �=4

transmission line resonator terminated by an array of three
superconducting quantum interference devices (SQUIDs)
[25]. The fundamental mode of the resonator is in good
approximation described as a nonlinear oscillator with an
effective Hamiltonian

H ¼ @!ra
yaþ @

K

2
ayayaa; (1)

FIG. 1 (color online). Schematic of the experimental setup.
The input and output modes of the parametric amplifier are
separated by using a circulator. Input modes ain are in the
vacuum state due to cold attenuators. The output signal is
amplified by a cold HEMT amplifier at 4 K, introducing the
dominant part of additional system noise h. Mixing with two
individual local oscillators at room temperature allows for a
simultaneous detection of two distinct modes in frequency space.
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where the nonlinearity is provided by the SQUIDs. The
Kerr constant K as well as the resonator frequency !r=2�
are functions of the effective Josephson energy EJ of the
SQUID array [26]. Thus, by changing the flux bias �
through the SQUID loops, the resonator frequency and
the Kerr constant can be tuned. A measurement of the
flux-dependent resonance frequency allows us to extract
both the effective Josephson energy and the Kerr constant.
Fitting the data shown in Fig. 2(a) to a model described in
Ref. [26] leads to the approximate values EJ;max=h �
1:3 THz and K=!r;max ¼ �1:1� 10�6 at the maximum

resonance frequency where!r;max=2� � 6:4 GHz. To fur-
ther characterize the resonator, we have measured the
reflection coefficient � in the linear regime [Fig. 2(b)].
From the real and imaginary parts of �, we can extract
the coupling of the resonator to the transmission line
�=2� � 15 MHz, which dominates over the internal loss
�i=2� � 2:5 MHz.

If a nonlinear oscillator is pumped close to its bifurca-
tion point with a coherent pump tone at frequency !p=2�,

the relation between input and output field modes ainð�Þ
and aoutð�Þ, respectively, can be written as [27]

aoutð�Þ ¼ A�ainð�Þ þ B�a
y
inð��Þ: (2)

Here � is the detuning from the pump frequency !p=2�,

where �> 0 (�< 0) corresponds to frequency compo-
nents at the upper (lower) sideband of the pump. The
frequency-dependent coefficients A� and B� fulfill the
relation jA�j2 � jB�j2 ¼ 1. Thus Eq. (2) describes a mini-
mal form quantum linear amplifier with gain G� ¼ jA�j2
[17]. When a signal is applied at one sideband, the fre-
quency components of the other sideband are usually
called idler modes. The device acts as a phase-preserving
amplifier when only the signal modes are analyzed at its
output.
We have characterized our device as such an amplifier.

To measure the maximum gain G0 as a function of !p=2�

and pump power Pp, we apply an additional weak coherent

tone (Ps � �170 dBm) with a small detuning of �=2� ¼
2:5 kHz to the input port. We measure the reflected
amplitude at this frequency and compare the result with
the one that we obtain when the pump tone is turned
off. The absolute square of this ratio is the gain G0; see
Fig. 2(c). We identify the critical point where G0 takes
its largest value [28] at !p;crit=2� � 5:877 GHz and

Pp;crit � �114 dBm. For pump powers below Pp;crit, we

are in the stable amplifier regime. A decrease in pump
power leads to smaller gain but to larger amplifier band-
width B. The gain-bandwidth product remains constant
according to the relation

ffiffiffiffiffiffi
G0

p
B / � [27], which we have

verified experimentally.
For the following measurements, we have fixed the

coherent pump at !p=2� ¼ 5:882 75 GHz and Pp �
�116:9 dBm. The signal frequency dependence of the
gain G� for this pump tone is shown in Fig. 2(d). We
have also measured the noise power spectral density S�
[29], which can be decomposed into two contributions:

S��ð���0Þ ¼ hhyð�0Þhð�Þi þ haoutð�0Þayoutð�Þi: (3)

The first term on the right-hand side describes the system
noise part, which is dominated by the high-electron-
mobility transistor (HEMT) amplifier noise. In the relevant
range it is almost frequency-independent and leads to a
constant contribution of Nnoise � 48 noise photons to S�
[Fig. 2(d)]. The second term in Eq. (3) stands for the noise
at the output of the parametric amplifier. Since it can be
interpreted as the amplified vacuum noise, the curves for
G� and (S� � Nnoise) are expected to be identical, which
allows us to determine the system noise offset Nnoise. Both
data sets are well described by the same theoretical curve
[27]; see the black lines in Fig. 2(d).
Up to now, we have characterized our device as a phase-

preserving amplifier. If the input of the parametric ampli-
fier is in the vacuum, the output is amplified vacuum noise.
However, due to the parametric nature of this amplification
process, where signal and idler photons are always gener-
ated in pairs, we expect the signal and idler frequency noise
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FIG. 2 (color online). (a) Measured (dots) and calculated
(solid line) resonance frequency !r=2� vs magnetic flux �.
(b) Measured real (blue dots) and imaginary (red diamonds) parts
of the reflection coefficient � in the linear regime for magnetic
flux � ¼ 0:23 and fit to theory (lines). (c) Measured maximum
gainG0 as a function of pump frequency!p=2� and pump power

Pp. A horizontal cut through the data at Pp � �114 dBm is

shown in white. (d) Measured gain G� (red dots) and power
spectral density S� (blue dots) for a fixed pump tone as a function
of detuning �. The 3 dB bandwidth of the gain curve with a
maximum gain of 10 dB is B=2� � 3:6 MHz. The absolute
values of the sinc Chebyshev filter functions f1ð�Þ and f2ð�Þ,
defining modes a1 and a2, are shown on a logarithmic scale
(arbitrary units) as the lines enclosing the shaded areas.
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to be strongly correlated. More specifically, the signal and
idler output modes should approximately be described by a
two-mode squeezed vacuum state. We verify this experi-
mentally by pumping the resonator with the same coherent
pump tone as before and recording the quadrature ampli-
tudes in both modes individually.

The resonator output is amplified with the same HEMT
amplifier as used for the gain measurements and split into
two channels. To separate signal and idler frequency com-
ponents from each other (Fig. 1), we effectively down-
convert the microwaves in both channels by mixing them
with local oscillator tones at frequencies !LO1=2� and
!LO2=2� set 6.25 MHz above and below the pump fre-
quency, respectively. The voltages are digitized every 10 ns
with an analog to digital converter. By using a field pro-
grammable gate array, the data are digitally filtered with a
sinc Chebyshev filter function fð�Þ as shown in Fig. 2(d).
As a result, the two detection channels linearly detect
photons with frequencies in the windows f1ð�Þ ¼ fð��
2�� 6:25 MHzÞ and f2ð�Þ ¼ fð�þ 2�� 6:25 MHzÞ,
respectively. The filter is designed such that both f1ð0Þ ¼
f2ð0Þ ¼ 0, rejecting the coherent pump tone.

As a result, the four quadrature components that we
extract after the digital data processing correspond to
measurement results of the complex valued operators [30]

X̂ 1;2 þ iP̂1;2 � a1;2 þ hy1;2 (4)

with a1;2 ¼
R1
�1 d�f1;2ð�Þaoutð�Þ and h1;2 equivalently.

a1 and a2 describe a pair of signal and idler modes at the
parametric amplifier output. The system noise modes h1
and h2 are in thermal states with mean photon number
Nnoise. We have verified this by measuring 2D quadrature
histograms for the noise modes while turning off the pump
tone where we observe perfectly circular symmetric
Gaussian distributions [10]; see Fig. 3(a).

According to Eq. (2), we expect a1 and a2 to be ap-
proximately in a two-mode squeezed vacuum state

expfra1a2 � ray1a
y
2 gj00i [7]. The relative phase between

the two local oscillators has been chosen such that the
squeezing parameter r is real and related to the average
gain by cosh2ðrÞ � R1

�1 d�jf1ð�Þj2G�. The two-mode

squeezed state is characterized by the covariances of the

4 quadrature components �̂i 2 fx̂1; p̂1; x̂2; p̂2g of the two
modes, defined by a1;2 ¼ x̂1;2 þ ip̂1;2. Quantum correla-

tions for this state become most apparent in the relative
‘‘position’’ x̂1 � x̂2 and the total ‘‘momentum’’ p̂1 þ p̂2

variables, which are squeezed below the standard vacuum
limit 1=2 according to hðx̂1 � x̂2Þ2i ¼ hðp̂1 þ p̂2Þ2i ¼
e�2r=2, while each component itself is amplified h�̂2

i i ¼
coshð2rÞ=4. Since the two-mode squeezed state belongs to
the class of Gaussian states, its Wigner function can be
written as a multivariate normal distribution [7]

Wð�Þ ¼ 1

4�2
ffiffiffiffiffiffiffiffiffiffi
detV

p exp

�
� 1

2
�V�1�T

�
(5)

with the vector of quadrature components � ¼
ðx1; p1; x2; p2Þ and the quadrature covariance matrix V

with elements Vi;j ¼ h�̂i�̂j þ �̂j�̂ii=2 [7]. The two-mode

phase space distribution is thus fully determined by the
4� 4 covariance matrix V, which describes the joint sta-
tistics of the amplitude fluctuations of the two modes.
To determine the elements of this matrix, we detect the

four quadrature components as explained above [Eq. (4)]
and store the results in two-dimensional histograms for the
six possible pairs fX1; P1g, fX2; P2g, fX1; P2g, fX2; P1g,
fX1; X2g, and fP1; P2g. For each pair, we first acquire a
reference histogram with the pump turned off [Fig. 3(a)],
which characterizes the quadrature distribution of the ef-
fective noise modes h1;2, and a second histogram with the

pump turned on. The differences between such histogram
pairs (see Fig. 3) show a systematic change in the detected
quadrature statistics when the resonator output in modes
a1;2 changes from the vacuum state to the state which is to

be characterized. For the single-mode histograms fX1; P1g
and fX2; P2g, we observe a phase-independent increase
in the quadrature fluctuations, reflected in the higher proba-
bility of measuring larger quadrature values [Figs. 3(b) and
3(c)]. Since the increase in fluctuations is circular symmet-
ric, it corresponds to a phase-preserving amplification in
each of the individual modes a1 and a2. However, for the
cross-histograms fX1; X2g and fP1; P2g, we find an increase
in the fluctuations along one diagonal axes, indicated by
the positive valued regions in the histogram differences
[Figs. 3(d) and 3(e)], and a decrease in the other direction.

FIG. 3 (color online). (a) Quadrature histogram fX1; P1g when
the pump tone is turned off given in units of its maximal value.
(b)–(e) Difference between quadrature histograms with the pump
tone turned on and off for 4 different quadrature pairs in the same
units as (a).
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Both these observed features are characteristic for a
two-mode squeezed state.

The measured data are further analyzed by separating
the contributions of noise modes h1;2 from those of

modes a1;2. We calculate all possible expectation values

hX̂iX̂jion;off and hX̂iP̂jion;off from the 12 measured pump on

and off histograms. Using relations such as hx̂21i ¼
hX̂2

1ion � hX̂2
1ioff þ 1=4, which follow from Eq. (4), we

can determine all second-order expectation values Vi;j.

Related experiments have recently shown [10] that this
separation of signal and noise moments can be reliably
realized up to fourth order for single-mode histograms.

The result for the covariance matrix is shown in Fig. 4(a).
Its diagonal elements express the amplified individual
quadrature fluctuations in both modes. Their values are in
good agreement with what we expect from the measured
gain averaged over the filter function. The nonvanishing
off-diagonal elements describe the squeezing correlations
between the two modes and are important to demonstrate
that the signal and idler photons are entangled. As a crite-
rion for nonclassicality, we determine the total momentum
fluctuations hðp̂1 þ p̂2Þ2i and the relative position fluctua-
tions hðx̂1 � x̂2Þ2i, where we find both values squeezed
below the standard quantum limit by �2:25� 0:16 and
�1:89� 0:13 dB, respectively. In addition, we have veri-
fied that our measured covariance matrix fulfills the non-
separability criterion formulated in Ref. [31].

We have further checked the influence of finite thermal
fluctuations on the presented results. In independent ex-
periments [32] we have found �n � 0:05 as an upper bound
for the thermal noise photon number at the input of the
resonator. Evaluating our measurement data, taking this
amount of thermal fluctuations into account, results in a
reduction of the vacuum squeezing by only 10%. The
amount of squeezing, that we have reached after optimiz-
ing the pump parameters, is limited by (i) the minimal filter
bandwidth that can be implemented to detect the photons,
(ii) the uncorrelated noise added by the parametric ampli-
fier due to internal losses, and (iii) the phase stability that
restricts us to operate the parametric amplifier at a point
where it has relatively small gain [14].

We evaluate Eq. (5) to reconstruct the four-dimensional
Wigner functionWð�Þ for the two modes. In Figs. 4(b) and
4(d), we show a selection of characteristic projections of
Wð�Þ on two-dimensional subspaces. The fx1; p1g projec-
tion, which describes the individual state of mode a1, is
amplified vacuum as expected. Compared to the theoretical
vacuum Wigner function [Fig. 4(c)], it has a larger vari-
ance, indicating the phase-preserving amplification of vac-
uum noise. The fx1; x2g projection is squeezed along the
diagonal axis, visualizing the two-mode squeezing corre-
lations between a1 and a2.

In summary, we have measured the full quadrature
covariance matrix of a two-mode squeezed state and ob-
served a reduction of quadrature noise in the variables

x̂1 � x̂2 and p̂1 þ p̂2 by approximately �2 dB below the
standard quantum limit. We believe that this value can be
increased by realizing a parametric amplifier with larger
bandwidth, which furthermore allows for using the device
as a low noise amplifier in other circuit QED experiments
[21]. An important step towards future continuous variable
quantum computation with propagating microwave pho-
tons [7] could be a combination of parametric amplifiers
with beam splitters to spatially separate signal and idler
modes and create nonlocal entanglement.
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