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We investigate the linear chain configurations of four-� clusters in 16O using a Skyrme cranked

Hartree-Fock method and discuss the relationship between the stability of such states and angular

momentum. We show the existence of a region of angular momentum (13–18@) where the linear chain

configuration is stabilized. For the first time we demonstrate that stable exotic states with a large moment

of inertia (@2=2�� 0:06–0:08 MeV) can exist.

DOI: 10.1103/PhysRevLett.107.112501 PACS numbers: 21.60.Jz, 21.30.Fe, 21.60.Cs

Strong nuclear deformations provide an excellent frame-
work in which to investigate the fundamental properties of
quantum many-body systems. Strongly deformed nuclei
have been identified by the observation of �-ray cascades
typical of rotational bands. Since the first observation of
such bands [1], strongly deformed states with an aspect ratio
1:2 have been found in various nuclei. These bands are
called superdeformed bands. Furthermore, the hyperde-
formed bands, in which the deformation is around 1:3,
have been reported in several experiments [2]. At first, those
strongly deformed states were found in the heavy nuclei.
Such new data have triggered interest in whether more
exotic states exist in light nuclei where a strong deformation
above 1:3 could be possible due to �-cluster structure.

Experimental candidates for strongly deformed states
with an aspect ratio above 1:3 have been suggested in light
4N nuclei. One candidate is the four-� linear chain band
starting around the four-� threshold energy region in 16O
suggested by Chevallier et al. [3] in the 12Cð�; 8BeÞ8Be
reaction and was supported by Suzuki et al. [4]. Freer
et al. [5] performed the 12Cð16O; 4�Þ reaction and obtained
a smaller moment of inertia, about 2=3 of Ref. [3]. Recently
it has been suggested that these have a loosely coupled
four-� structure [6], in connection with the gaslike 0þ2
(Hoyle) state in 12C [7]. Another candidate is a six-� linear
chain state, which has been extensively studied both theo-
retically and experimentally [8–11].Wuosmaa et al. [10] and
Rae et al. [11] suggested that the molecular resonance state
observed in the inelastic reaction 12Cð12C; 12Cð0þ2 ÞÞ12Cð0þ2 Þ
might be a candidate for the six-� linear chain state.
Hirabayashi et al. [12] claimed that this has a loosely
coupled 3�þ 3� configuration rather than a linear chain.
The seven-� linear chain state in 28Siwas not observed [13].
Despite many efforts no clear experimental evidence of a
stable � linear chain structure has been confirmed and its
existence remains an open problem.

The stability of such linear chain states has often been
studied through the analysis of small vibrations around the

equilibrium configuration and with the axial symmetry
[9,14]. However, it was shown that bending motion is an
essential path for the transition to low-lying states [15].
Thus it is necessary to calculate the stability in a wide
model space, which contains lower excited states. Two
mechanisms are important for stabilizing the linear chain
state. The first mechanism is the quantum-mechanical
orthogonality condition to other low-lying states. The sec-
ond is, as discussed by Wilkinson [16], the competition
between the nuclear attractive and centrifugal forces due to
rotation of the system: a large moment of inertia such as
in the linear chain configuration is favored with a large
angular momentum. On the other hand, high angular
momenta would lead to fission of the linear chain due to
the strong centrifugal force. Detailed investigations are
necessary for the existence of a region of angular momen-
tum where the linear chain configuration is stabilized.
In this Letter we show that a region of angular momen-

tum (13–18@) where the four-� linear chain configuration
is stabilized exists in 16O. The cranked Hartree-Fock (HF)
method is used to investigate the stability of the configu-
ration and the moment of inertia. The mechanism of the
stabilization against the decay with respect to bending
motion and fission and its angular-momentum dependence
is clarified.
Until now, most of the theoretical analyses of the linear

chain structure have been performed using the conven-
tional cluster model with effective interactions, whose
parameters are determined to reproduce the binding ener-
gies and scattering phase shifts of the clusters. Thus it is
highly desirable to study the presence of exotic cluster
configurations based on different approaches, such as
mean-field models. The effective interactions used in the
mean-field models are determined in a completely different
way; they are designed to reproduce various properties of
nuclei in a wide mass range. The appearance of cluster
structure as a result of calculations with such interactions
and model spaces would give more confidence in their
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presence. Recent developments of three-dimensional cal-
culations with Skyrme forces enable us to describe both
shell-like and clusterlike configurations, and the interplay
between these structures based on this approach has been
successfully investigated [17].

To investigate the four-� linear chain state in the rota-
tional frame, we perform cranked HF calculations. We self-
consistently calculate the cranked HF equation, given by
�hH �!Ji ¼ 0, whereH is the total Hamiltonian,! is the
rotational frequency, and J is the angular momentum
around the y axis. We represent the single-particle wave
functions on a Cartesian grid with a grid spacing of 0.8 fm.
The grid size is typically 243 for ground states and 32�242

for superdeformed states. This accuracy was seen to be
sufficient to provide converged configurations. The nu-
merical procedure is the damped-gradient iteration method
[18], and all derivatives are calculated using the Fourier
transform method.

We take three different Skyrme forces which all perform
very well concerning nuclear bulk properties but differ in
details: SLy6 as a recent fit which includes information on

isotopic trends and neutron matter [19] and SkI3 as well as
SkI4 as recent fits which map the relativistic isovector
structure of the spin-orbit force [20]. The force SkI3 con-
tains a fixed isovector part analogous to the relativistic
mean-field model, whereas SkI4 is adjusted allowing free
variation of the isovector spin-orbit term. Thus all forces
differ somewhat in their actual shell structure. In addition
to the effective mass, the bulk parameters (equilibrium
energy and density, incompressibility, and symmetry en-
ergy) are comparable.
Here we discuss the stability of the four-� linear chain

configuration in the rotating frame for 16O. To this end, we
perform the cranked HF calculations with various rota-
tional frequencies !. For the initial wave function, we
choose the z axis as the principal axis and use the twisted
four-� configuration, as shown in Fig. 1. We also show the
corresponding two-dimensional plot in Fig. 2(a). Note that
this initial configuration is a three-dimensional four-� one,
which facilitates the transition of the initial state to low-
lying states including the ground state during the conver-
gence process. This was demonstrated for the carbon chain
states in Refs. [21,22]. We calculate the rigid-body mo-
ment of inertia � using the total nucleon density at each
iteration step. We only consider rotation around the y axis
(perpendicular to the deformation axis z).
We first investigate the convergence behavior of the HF

iterations. To check this, we calculate the coefficient of the
rotational energy, given by @

2=2�, at each iteration step.
Figure 3 shows the calculated results with various rota-
tional frequencies versus the iterations in the case of the
SkI3 interaction. The initial state with the twisted linear
chain configuration is not the true ground state of the HF
model space and the solution changes into the true ground
state after some large number of iterations; however, the
situation depends on the value of the rotational frequency
!. In Fig. 3, we see that the rotational frequencies
! ¼ 0:5, 1.0, and 1:5 MeV=@ (the dashed, dotted, and
dot-dashed lines, respectively) lead to the true ground state.
Note that the rigid-body moment of inertia � is a classical
value, which does not become zero even with spherical

FIG. 1 (color online). Surface of the total nucleon density
distribution for the initial twisted wave function. We chose the
surface as half of the total density.
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FIG. 2 (color online). Total nucleon density distribution calculated using the cranking method for (a) the initial wave function,
(b) the ground state, (c) the quasistable state, and (d) the four-� linear chain state. The isolines correspond to multiples of 0:02 fm�3.
We normalize the color to the density distribution at the maximum of each plot.
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shapes. The corresponding density distribution at the
15 000th iteration is plotted in Fig. 2(b). The frequency
! ¼ 0:0 MeV=@ (the solid line in Fig. 3) leads to the
quasistable state [see Fig. 2(c)]. At around ! ¼
2:0 MeV=@, we obtain the state (the thick solid line in
Fig. 3) with the four-� linear chain configuration, as shown
in Fig. 2(d), whereas fission occurs above those rotational
frequencies (the dot-dot-dashed line in Fig. 3).

We next estimate the range of the rotational frequencies
where the four-� linear chain configuration can be stabi-
lized. Figure 4 shows the coefficient of the rotational
energy @

2=2� versus the rotational frequency ! with
various Skyrme interactions. We find stable states for the
four-� linear chain configuration for all of the interactions.
For the SkI3 interaction, we obtain the lower and upper
bounds of the rotational frequencies as 1.8 and 2:2 MeV=@.
Between these the four-� linear chain configuration is
stabilized. The values are 1.9 and 2:2 MeV=@ for the
SkI4 interaction and 2.0 and 2:1 MeV=@ for the SLy6
interaction, respectively. In these frequency regions where
the linear chain configuration is stabilized, we can define
the rigid-body moments of inertia, which are calculated as
0.065 MeV for the SkI3 and SkI4 interactions and
0.06 MeV for the SLy6 interaction. These values are con-
sistent with 0.063 in a naive picture of rigid-body four-�’s
laid in linear chain with 12 fm as in Fig. 2(d).

We also estimate the corresponding angular momentum
where the four-� linear chain configuration is stabilized.
We calculate the angular momentum using the rigid-body
moment of inertia obtained and compare it with the value
calculated by the cranking method. The angular momen-
tum with the rigid-body moment of inertia Jrid is calculated
as Jrid ¼ �!. The angular momentum calculated using the
cranking method Jcra is given by Jcra ¼ hJi, where hJi is
the expectation value of the angular momentum in the

cranking equation. Figure 5 shows the angular momentum
obtained versus the rotational frequency. We see that the
calculated angular momentum using the rigid-body mo-
ment of inertia agrees well with that of the cranking
method, indicating that the rigid-body approximation is
reasonable for the four-� linear chain states. We find that
the lower and upper bounds of the angular momentum
where the four-� linear chain configuration is stabilized
are about 13 and 18@ for the SkI3 interaction, 14 and 18@
for the SkI4 interaction, and 16 and 18@ for the SLy6
interaction, respectively. With such a high angular momen-
tum, a very exotic configuration of the four-� linear chain
can be stabilized. Fission occurs beyond this angular-
momentum region. Furthermore, it is possible that states
with even lower angular momenta are stabilized when the
coupling effect with low-lying states is taken into account.
Finally, in Fig. 6 we show the excitation energies of

calculated four-� linear chain states with the SkI3 force
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FIG. 3. Coefficient of the rotational energy @
2=2� calculated

using the cranking method versus the HF iterations with various
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versus the angular momentum J measured from the ground
state of 16O. We also calculate the cluster-decomposition
thresholds using the ground state energies taken from
Ref. [17]. Note that the HF calculations with the Skyrme
force often underestimate the binding energy of 8Be. To
improve this, the angular-momentum projection would be
necessary. The calculated cluster-decomposition threshold
energies for 12Cþ �, �þ �þ �þ �, 8Beþ �þ �, and
8Beþ 8Be are 11.8, 17.7, 23.6, and 29.5 MeV, respectively
(the dotted lines in Fig. 6). The excitation energy is very high,
at around 50 MeV with J � 14. If we extrapolate the energy
to lower angular momentum, the band head energy at J ¼ 0
is estimated to be around 38MeV, which is much higher than
the value suggested in Ref. [3]. This rather high excitation
energy in the Skyrme forces is also reported in Ref. [9].

In summary, we have investigated the stability of the
four-� linear chain configuration in 16O using the Skyrme
mean-field method with cranking. Even if the bending path
is opened in the three-dimensional space, we obtained
regions of rotational frequency where the linear chain
configuration is stabilized. Below this region, the state
converges to low-lying configurations, with fission occur-
ring beyond this region. The frequency range corresponds
to angular momenta of 13–18@. Furthermore, when the
coupling effect with low-lying states is taken into account
there is a possibility that states with even lower angular
momentum are stabilized. The coefficient of the rotation
(@2=2�) of the four-� linear chain configuration obtained
is around 0.06–0.08 MeV. We have, for first time, shown
that states with such large moments of inertia are possible
in light nuclei under conditions of large angular momenta.

As shown in this Letter, the exotic four-� linear chain
state can indeed exist in 16O. We also investigated whether
such a state can be accessible in the 8Beþ 8Be fusion
reaction using the time-dependent HF method with the
same Skyrme force as the present study [23]. We obtained
a quasistable state with a similar moment of inertia, as
shown here. The HF method is a powerful tool for

investigating both the static and dynamical properties of
nuclei in the consistent framework. This method is a
promising tool to reveal the existence of states with more
exotic geometric configurations, such as longer linear
chain [24] and polygons [16], which is still an open ques-
tion for their existence.
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