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We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the

lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in

a manifestly gauge-covariant manner. The coefficients of the � � B term in the NRQCD action and the

four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine

splitting of bottomonium is found to bring the lattice predictions in line with experiment.
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Nonrelativistic QCD (NRQCD) [1] is an effective field
theory that has been applied with considerable success to
the description of hadrons containing heavy quarks [2].
However, the currently used NRQCD actions do not in-
clude radiative improvement (with the exception of tadpole
improvement), and this will affect the precision with which
crucial quantities such as the hyperfine splitting between
the � and the �b can be determined [3]. In contrast to this,
nonrelativistic QED (NRQED) has been successfully im-
proved and applied to obtain highly precise theoretical
predictions for the fine structure of muonium [4,5]. It is
clearly highly desirable to improve NRQCD in a similar
manner. This is rendered complicated by the nature of the
non-Abelian gauge interactions in QCD and NRQCD,
which requires NRQCD to be implemented on a lattice
and hence makes it necessary to retain the full 1=ðmaÞn
dependences, whereas in continuum NRQED ð�=mÞn
terms can be omitted in a consistent manner. Moreover,
IR divergences play a nontrivial role in QCD and NRQCD.

In this Letter, we present the first calculation of radiative
corrections to coefficients in the lattice NRQCD action
using the background field (BF) method. We compute the
one-loop effective action in lattice NRQCD and match it
term-by-term to the nonrelativistic reduction of the one-
loop effective action for continuum QCD. In particular, we
determine the one-loop corrections to the coefficient of
the chromomagnetic � �B term and the four-fermion spin-
spin interaction; these corrections are important for the
accurate calculation of the hyperfine structure of heavy
quark states using NRQCD.

The background field method for lattice NRQCD.—The
BF method [6–9] is a well-established tool to compute the
effective action in quantum field theory. The auxiliary
gauge invariance of BFG amplitudes implies that the ef-
fective action contains only gauge-covariant operators
which leads to a set of Ward identities in QCD that reduce

the amount of calculation necessary to renormalize the
theory. This property is important for operators of dimen-
sion D> 4 where the loss of gauge covariance would lead
to a proliferation of additional operators and is vital to the
radiative improvement of NRQCD which is a nonrelativ-
istic expansion on operators of increasing dimension; only
BFG will guarantee the gauge covariance of the improved
effective action. While the presence of gauge noncovariant
operators with D> 4 in the effective action is not per se
incorrect, they obscure the underlying gauge symmetry and
greatly complicate the theory and simulation. An attempt
to match without using BFG would lead to the appearance
of ultraviolet logarithms, which would have to be cancelled
by the contributions from additional non-gauge-covariant
operators. Although BFG does not guarantee that the co-
efficients in the effective action are independent of the
gauge parameter [10], in our case we match between
theories using on-shell quantities and we explicitly find
that the coefficients are independent of the gauge parame-
ter in both QCD and NRQCD. Moreover, the QED-like
Ward identities in BFG imply that the one-particle irreduc-
ible (1PI) vertex functions are finite, and that the coupling
g is renormalized only by the contribution from the gluonic
self-energy, whereas the BF is not renormalized. This is
true both in QCD and NRQCD, which allows us to match
the theories by equating two finite quantities. As a conse-
quence of this crucial property of BFG, we are free to use
different regulators in QCD and NRQCD. In particular, we
can calculate the QCD vertex analytically in the continuum
using dimensional regularization, or on a fine lattice and
taking the continuum limit. The latter is particularly con-
venient for checking the gauge-parameter independence of
the result, since the analytical calculation becomes rather
involved for general values of the gauge parameter.
In the following we denote the perturbative expansion

for a generic parameter w as w ¼ P
n¼0w

ðnÞ�n.
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Matching the � �B term.—The effective action for con-
tinuum QCD contains the following terms involving the
fermion fields:

�½�; ��; A� ¼ Z�1
2

�� 6D�þ �Z�
��
���F��

2m
�þ . . . (1)

which after renormalization of the first term gives

�½�R; ��R; A� ¼ ��R 6D�R þ b� ��R

���F��

2mR

�R þ . . .

(2)

with

b� ¼ �Z�Z2Zm ¼ X
n¼1

bðnÞ� �n; (3)

where the leading correction is of order Oð�sÞ and comes
from �Z� alone. After performing the nonrelativistic re-
duction by a Foldy-Wouthuysen-Tani (FWT) transforma-
tion, we find that the term relevant for the determination of
the chromomagnetic moment of the quark is

ð1þ b�Þc y
R

� �B
2mR

c R: (4)

A straightforward analytical calculation of the Feynman
diagrams shown in Figs. 1(a) and 1(b) gives

b� ¼
�
3

2�
log

�

m
þ 13

6�

�
� (5)

at the one-loop level, where � is the infrared cutoff.
The effective action for NRQCD contains the spin-

dependent term

��½c ; c y; A� ¼ c4Z
NR
� c y � � B

2M
c (6)

which after renormalization becomes

��½c R; c
y
R; A� ¼ c4Z

NR
� ZNR

2 ZNR
m c y

R

� �B
2MR

c R: (7)

We require that the anomalous chromomagnetic moment
in QCD and NRQCD be equal and find the matching
condition

c4Z
NR
� ZNR

2 ZNR
m ¼ 1þ b�; (8)

and at tree-level and one-loop order we find

cð0Þ4 ¼ 1; cð1Þ4 ¼ bð1Þ� � �ZNR;ð1Þ
� � �ZNR;ð1Þ

2 � �ZNR;ð1Þ
m :

(9)

The NRQCD contribution to cð1Þ4 contains a logarithmic

IR divergence 3�
2� logð�aÞ, which combines with the IR

logarithm from the QCD result above to yield an overall
logarithmic contribution � 3�

2� logðMaÞ.
Besides the ordinary diagrammatic contributions calcu-

lated below, we also need to take into account the contri-
butions from the mean-field improvement U � U=u0,

which affect �ZNR;ð1Þ
� and �ZNR;ð1Þ

m . Perturbatively, u0 ¼
1� �su

ð2Þ
0 , and the contributions from inserting this

expansion into the NRQCD action can be worked out
algebraically. The final result for the one-loop correction
to c4 is then

cð1Þ4 ¼ 13

6�
� �~ZNR;ð1Þ

� � � ~ZNR;ð1Þ
2 � �~ZNR;ð1Þ

m

� �Ztad;ð1Þ
m � �Ztad;ð1Þ

� � 3

2�
logMa; (10)

where �~ZX denotes a finite diagrammatic contribution. We
expect the coefficient c4 to be gauge-parameter indepen-
dent for on-shell quarks, since it is directly related to the
hyperfine splitting, which is a physical quantity.
The four-fermion spin-spin interaction.—In NRQCD the

hyperfine splitting in the b �b system also receives a con-
tribution from the spin-dependent four-fermion operators
generated by Q �Q ! Q �Q scattering in the color singlet
channel. It is conventional to write these contributions
using a Fierz transformation [1,11]

S4f ¼ d1
�2

M2
ðc y��Þð�Tc Þ þ d2

�2

M2
ðc y���Þ � ð�T�c Þ;

(11)

where c and � are the quark and antiquark fields, respec-
tively, treated as different particle species with correspond-
ing representations of their spin and color algebras. The
spin-independent contributions to d1 and d2 from Q �Q
scattering are not included as they do not influence the
hyperfine structure. In QCD the two continuum diagrams
are shown in Figs. 2(a) and 2(b), and in NRQCD all

FIG. 1. Feynman diagrams to be computed in both QCD and
NRQCD for matching the � �B term in the NRQCD action.
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diagrams in Fig. 2 need to be calculated. The one-loop
contributions to the renormalization constants for the op-
erators in Eq. (11) take the form, respectively,

Zf1 ¼ �2

�
Af1 � log

�

m
� 16�

27

m

�

�
; Zf2 ¼ �1

3Zf1:

(12)

The last term in both expressions is the Coulomb singu-
larity arising from the Coulomb gluon exchange in
Fig. 2(a). For QCD these expressions were verified numeri-
cally and for both QCD and NRQCD were shown to be
gauge-parameter independent; there are two independent
color trace combinations, each of which is separately
gauge independent. In the numerical calculations we
used IR subtraction functions to analytically remove both
IR and Coulomb divergences; this greatly improved con-
vergence. For QCD we find

AR
f1 ¼ 8

27: (13)

The matching parameters for the term in the NRQCD
action, including the two-gluon annihilation contribution
to d1 [11], are then

d1 ¼ �3d2 � 2
9ð2� 2 log2Þ;

d2 ¼ 8
81 � 1

3A
NR
f1 þ 1

3 logMa:
(14)

Implementation and results.—To perform the calcula-
tion in NRQCD, we employ the HIPPYand HPSRC packages
for automated lattice perturbation theory [12,13], which
we extended to deal with the modifications of the usual
Feynman rules engendered by the use of BFG [14,15].
Specifically, in the expansion of a gauge link the back-
ground fields B� must always appear to the right of the

quantum fields A� and so not all orderings of background

and quantum fields can arise. Additional contributions to
all purely gluonic vertices including exactly two quantum
gluons arise from the gauge-fixing term and additional
ghost field vertices are generated which have been included
but are not needed for the present calculation. For further
implementation details the reader is referred to [16].

For the � �B operator matching we compute the dia-
grams in Figs. 1(a)–1(f) and for the four-fermion operator
matching we compute the diagrams in Fig. 2. We use the
HPSRC library, which includes a parallel implementation of

VEGAS [17], as well as routines for automatic differentia-

tion of Feynman diagrams [18]. We carried out a number of
checks of the calculation. First, we replicate the known IR
logs correctly. We find that the coefficients of these logs are
gauge-parameter independent and, since this is not true of
the contributions from individual diagrams, it provides a
strong check. Second, we check that the nonlogarithmic
part of the result is similarly gauge-parameter independent
where the individual contributions are not. For matching
the four-fermion terms it is vital to employ IR subtraction
functions to remove logarithmic and Coulomb IR
singularities.
For NRQCD, we used the action from [2] with stability

parameter n ¼ 2, and we used the Symanzik improved
gluon action [19], which were also used by the MILC
collaboration [20] whose configurations were used in [2].
We find

�Ztad;ð1Þ
m ¼ �

�
2

3
þ 3

ðMaÞ2
�
uð2Þ0 : (15)

The tadpole contribution to �ZNR;ð1Þ
� comes from the mean-

field improvement of the improved field-strength tensor
and from the cross-multiplication of the tree-level � �B
term with the tadpole corrections terms in H0 [2]. The
overall result is

�Ztad;ð1Þ
� ¼

�
13

3
þ 13

4Ma
� 3

8nðMaÞ2 �
3

4ðMaÞ3
�
uð2Þ0 : (16)

We chose the Landau mean link to be uð2Þ0 ¼ 0:750 [21].
Our results are shown in Table I.
Whilst there is no substitute for including these radiative

corrections in a simulation, we note that both operators
give a contribution to the hyperfine splitting that is domi-
nated by a contact term. The leading contribution from the
g� �B term, already included in the simulation, is Oð�Þ
and so the radiative correction to c4 and the leading con-
tribution from the four-fermion terms in Eq. (11) both

FIG. 2. Feynman diagrams to be computed in both QCD and
NRQCD for matching the four-fermion terms in the NRQCD
action. There are two diagrams with the topology of (c).

TABLE I. Renormalization parameters of the � � B and the
four-fermion terms defined, respectively, in Eqs. (11) and (14).

Ma 1.95 2.8 4.0

� ~Z� þ � ~Z2 �5:164ð7Þ �4:913ð6Þ �4:739ð6Þ
� ~Zm 1.512(1) 1.022(3) 0.723(2)

�Ztad
� 4.387 4.077 3.841

�Ztad
m �1:092 �0:787 �0:641

cð1Þ4 0.728(7) 0.799(7) 0.842(6)

d1 0.043(7) �0:703ð14Þ �1:734ð25Þ
d2 �0:060ð2Þ 0.189(5) 0.532(8)
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contribute at Oð�2Þ giving an Oð�Þ correction to the
measured tree-level contribution. A reasonable estimate
for the multiplicative correction to the tree-level prediction
for the hyperfine splitting is then

1þ �Vðq�Þ
�
2cð1Þ4 � 27

16�
ðd1 � d2Þ

�
; (17)

where we chose q� ¼ �=a. Applying our results to the
hyperfine splitting of bottomonium, we find the corrections
given in Table II for the data points of [2]. On all lattices
the correction is positive and the remaining Oða2Þ error in
the NRQCD predictions of [2] is reduced to be within
errors.

Conclusion.—In this Letter, we have applied the BF
method to lattice NRQCD for the first time and have
computed the one-loop radiative correction to the coeffi-
cient c4 of the � �B operator and the one-loop radiative
contribution to the coefficients d1 and d2 of the four-
fermion contact operators that affect the hyperfine struc-
ture of heavy quark mesons. The gauge independence of
our calculation was explicitly checked by carrying out both
relativistic and nonrelativistic calculations in the lattice
theory. This is possible because in BFG all calculations
are UV finite. Our results are summarized in Table I and in
Eqs. (10) and (14). In particular, in Eq. (10) there is a
negative correction to c4 due to the IR divergences.
However, it turns out that the constant terms more than
cancel this effect and the correction to c4 is positive. While
there is no substitute for including these corrections in a
simulation, we have given an estimate for the correction to
the �� �b hyperfine splitting measured by Gray et al. [2]
in Table II. The result is to reduce the lattice spacing
dependence to within errors and to give an estimate for
this hyperfine splitting of 73(3)(5)(6) MeV to be compared
with the experimental value of 69.3(2.8) MeV [22]. The
errors shown are statistical, Oð�2Þ, and due to relativistic
corrections, respectively. The elimination ofOð�a2Þ errors

and the agreement with experiment gives us confidence
that the calculations are robust.
The determination of the one-loop radiative corrections

to the coefficients of the p4, Darwin and spin-orbit terms
and other four-fermion contact terms, as well as more
details of the calculations will be presented in a longer
paper in the near future.
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