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We derive general results for the mass shift of bound states with angular momentum ‘ � 1 in a finite

periodic volume. Our results have direct applications to lattice simulations of hadronic molecules as well

as atomic nuclei. While the binding of S-wave bound states increases at finite volume, we show that the

binding of P-wave bound states decreases. The mass shift for D-wave bound states as well as higher

partial waves depends on the representation of the cubic rotation group. Nevertheless, the multiplet-

averaged mass shift for any angular momentum ‘ can be expressed in a simple form, and the sign of the

shift alternates for even and odd ‘. We verify our analytical results with explicit numerical calculations.

We also show numerically that similar volume corrections appear in three-body bound states.
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Introduction.—With recent advances in computational
power and algorithms, the physics of numerous quantum
few- and many-body systems can now be investigated from
first principles. Lattice simulations are an important tool
for such calculations [1–3]. The system is solved numeri-
cally using a discretized spacetime in a finite volume. In
practice, the finite volume is usually a cubic box with
periodic boundaries. The box modifies the bound state
wave functions and leads to shifts in the binding energies.
This shift needs to be subtracted from the calculated en-
ergies for comparison to experiment. In the case of S-wave
bound states, Lüscher has derived a formula for the finite-
volume mass shift of two-body states [4]. See Ref. [5] for a
recent application of this method in lattice QCD to extract
the mass of the proposed H dibaryon.

But there are also many bound states with nonzero
orbital angular momentum. In nuclear physics, some par-
ticularly interesting examples occur in halo nuclei [6–9].
These nuclei show a pronounced cluster structure. One-
neutron halo nuclei can be regarded as a tightly bound core
with an extra neutron. In such cases the separation energy
for the neutron is much smaller than the binding energy of
the core as well as the energy required for core excitation.
Thus, the volume dependence of energy levels obtained in
ab initio lattice calculations of such halo systems would
behave as a two-body system.

A well-known example of a P-wave halo state is the
JP ¼ 1=2� excited state in 11Be. The electromagnetic
properties of the low-lying states in 11Be can be well
described in a two-body halo picture [7,9]. If Coulomb
interactions are included, proton halos such as 8B also
become accessible. In atomic physics, several experiments
have investigated strongly interacting P-wave Feshbach
resonances in 6Li and 40K [10–12], which can be tuned
to produce bound P-wave dimers. There is interest in
P-wave molecules in hadronic physics [13] as well as

lattice investigations of the excited nucleon spectrum in a
number of different spin channels [14]. Some of these
states have been conjectured to have a molecular baryon-
meson structure [15]. An extension of Lüscher’s formula to
higher partial waves would provide a tool to discern mo-
lecular structures in hadronic states as well as halo struc-
tures in nuclei from the finite-volume dependence of lattice
calculations for such systems.
In this Letter, we derive general formulas for the finite-

volume mass shift for bound states with nonzero orbital
angular momentum ‘. We also obtain a simple expression
for the multiplet-averaged mass shift for angular momen-
tum ‘. We verify our analytical results with numerical
calculations using an attractive short-range potential. We
note recent studies on the related topics of extracting
resonance properties and scattering phase shifts in higher
partial waves from finite-volume energy levels [16,17].
Although our analytic derivation can be applied rigorously
only to two-body systems, we show numerically that quan-
titatively similar results also appear in three-body systems.
Mass shift formula.—In order to derive a general mass

shift formula we consider a bound state solution jc Bi of
the Schrödinger equation,

Ĥjc Bi ¼ �EBjc Bi; Ĥ ¼ � 1

2�
�r þ VðrÞ; (1)

with angular quantum numbers (‘;m) in a finite box of
size L3 with periodic boundary conditions. Following
Lüscher’s derivation in [4], the energy shift compared to
the infinite volume solution,

�mB ¼ EBð1Þ � EBðLÞ; (2)

can be written as
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where n is an integer vector and � � ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�EB

p
is the binding

momentum. We assume that the potential has a finite range
R � L. Equation (3) arises from the overlap between
copies of the system introduced by the periodic boundary
conditions. For r > R, the wave function has the asymp-
totic form

c BðrÞ ¼ Ym
‘ ð�;�Þ i

‘�ĥþ‘ ði�rÞ
r

; � 2 R; (4)

where ĥþ‘ is a Riccati-Hankel function. We will use the
relation

Ym
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þ
‘ ði�rÞ
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¼ ð�iÞ‘Rm
‘

�
� 1

�
rr

��
e��r

r

�
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which follows from Lemma B.1 in [18] and a derivative
formula for spherical Hankel functions [19]. The functions
Rm
‘ are the solid harmonics defined via Rm

‘ ðrÞ ¼
r‘Ym

‘ ð�;�Þ.
For S waves, Eq. (5) is a trivial identity. Inserting the

Schrödinger equation to rewrite VðrÞ in (3), and using
the fact that expð��rÞ=ð4�rÞ is a Green’s function for
the operator [�r � �2], we recover Lüscher’s result for
S-wave bound states. In our notation this reads

�mB ¼ �3j�j2 e
��L

�L
þOðe�

ffiffi
2

p
�LÞ: (6)

We now generalize the mass shift formula to higher
orbital angular momentum. In the following we explicitly
show the derivation for P waves. We insert the asymptotic
expression (4) with ‘ ¼ 1 into Eq. (3) and use (5) to rewrite
the Riccati-Hankel function. For m ¼ 0 we find

�mð1;0Þ
B ¼ �

ffiffiffiffiffiffiffi
3�

p
�

��

X

jnj¼1

@

@z
c �

Bðr� nLÞjr¼0 þOðe�
ffiffi
2

p
�LÞ

(7)

after integrating by parts. Form ¼ �1, the result is similar
and involves derivatives with respect to x and y. Evaluating
the sums then yields

�mð1;0Þ
B ¼ �mð1;�1Þ

B ¼ 3j�j2 e
��L

�L
þOðe�

ffiffi
2

p
�LÞ: (8)

Compared to the S-wave case, the P-wave mass shift is
opposite in sign but equal in magnitude. Qualitatively, this
means that S-wave bound states are more deeply bound
when put in a finite volume while P-wave states are less
bound.

For higher partial waves we can proceed in exactly the
same manner. The results, however, are more complicated
and the shift forD waves and higher partial waves depends

on the quantum numberm. We note that due to the periodic
boundaries, the rotational symmetry group is reduced to a
cubic subgroup. As a consequence, angular momentum
multiplets are split into irreducible representations of this
subgroup (see, for example, Ref. [16]). A similar splitting
also arises in lattice calculations due to discretization
artifacts.
The mass shift for general ‘ can be expressed as

�mB ¼ �

�
1

�L

�
j�j2 e

��L

�L
þOðe�

ffiffi
2

p
�LÞ; (9)

where the coefficients �ð 1
�LÞ are given in Table I for

‘ ¼ 0; 1; 2. The irreducible representation of the cubic
group is denoted by � in Table I. A detailed derivation of
the general mass shift formula will be provided in a forth-
coming publication [20].
The expressions for the finite-volume mass shift become

simpler when we sum over all m for a given ‘. Using
the trace formula for spherical harmonics, it can be shown
[20] that

X‘

m¼�‘

�mð‘;mÞ
B ¼ ð�1Þ‘þ1ð2‘þ 1Þ3j�j2 e

��L

�L
þOðe�

ffiffi
2

p
�LÞ:

(10)

Dividing by 2‘þ 1, we obtain the average mass shift for
states with angular momentum ‘. Apart from the overall
sign, this average shift is independent of ‘. This follows
from the fact that Ym

‘ ð�;�ÞYm�
‘ ð�;�Þ averaged over m ¼

�‘; . . . ; ‘ is equal to 1=ð4�Þ for all �, �, and ‘. For the
case ‘ ¼ 2 (cf. Table I), Eq. (10) can be verified explicitly
by averaging over the three-dimensional representation Tþ

2

and the two-dimensional representation Eþ. The mass
shifts for the S- and P-wave states are especially simple
because these multiplets are not split apart into more than
one cubic representation.
The sign of the finite-volume mass shift can be

explained in terms of the parity of the wave function. At
infinite volume the tail of each bound state wave function
must vanish at infinity. At finite volume, however, the
bound state wave functions with even parity along a given
axis can remain nonzero everywhere. Only the derivative
needs to vanish at the boundary, and the kinetic energy is
lowered by broadening of the wave function profile. On the
other hand, a wave function with odd parity along a given

TABLE I. Coefficient �ðxÞ in the expression for the finite-
volume mass shifts for ‘ ¼ 0; 1; 2. � indicates the corresponding
representation of the cubic group.

‘ � �ðxÞ
0 Aþ

1 �3
1 T�

1 þ3
2 Tþ

2 30xþ 135x2 þ 315x3 þ 315x4

2 Eþ � 1
2 ð15þ 90xþ 405x2 þ 945x3 þ 945x4Þ
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axis must change sign across the boundary. In this case the
wave function profile is compressed and the kinetic energy
is increased. We have illustrated both cases for a one-
dimensional square well potential in Fig. 1.

Comparison with numerical results.—We test our
predictions for the S-wave and P-wave mass shifts using
numerical lattice calculations. In Fig. 2, we show the mass
shifts obtained from numerically solving the Schrödinger
equation for a lattice Gaussian potential

VðrÞ ¼ �V0 exp½�r2=ð2R2Þ�; (11)

with R ¼ 1, V0 ¼ 6, and � ¼ 1. All quantities are in
lattice units. This potential does not have a finite range in
a strict mathematical sense, but the range corrections can
be entirely neglected. In order to compare the dependence

on the box size L with the predicted behavior, we have
plotted logðLj�mBjÞ against L (for S waves �mB is nega-
tive). The expected linear dependence is clearly visible.
For comparison we have calculated mass shifts using

three different methods. The crosses show the direct dif-
ference, Eq. (2), where we have used L1 ¼ 40 to approxi-
mate the infinite volume solutions. The boxes were
obtained from the overlap formula (3). The circles were
calculated using discretized versions of (6) and (8), which
we obtained by replacing expð��rÞ=r with the lattice
Green’s function

G�ðnÞ ¼ G

�
n;� �2

2�

�
¼ 1

L3

X

q

e�iq�n

Q2ðqÞ þ �2
; (12)

where Q2ðqÞ ¼ 2
P

i¼1;2;3ð1� cosqiÞ. This Green’s func-

tion is also used to calculate the asymptotic normalization
� from the lattice data. This incorporates the correct dis-
persion relation for our lattice model. Both the overlap and
Green’s function results were calculated using lattice wave
functions from the L1 ¼ 40 calculation.
All three results agree well for both the Swave and the P

wave. For small L there are visible deviations which can be

attributed to the Oðe�
ffiffi
2

p
�LÞ corrections as well as potential

range effects. The inset in Fig. 2 shows this more clearly.
There we plot the relative differences between the (loga-
rithmic) direct results versus the overlap and Green’s
function data.
When we perform a linear fit to the overlap integral data

(dashed lines in Fig. 2) we obtain � ¼ 2:198� 0:005,
j�j ¼ 11:5� 0:2 for the S-wave results and � ¼ 1:501�
0:004, j�j ¼ 7:0� 0:1 for the P-wave results. The values
for the asymptotic normalization are in good agreement
with the results j�j 	 11:5 (S wave) and j�j 	 7:2
(P wave) that are obtained directly from the L1 ¼ 40
data. Inserting the corresponding energy eigenvalues into
the lattice dispersion relation

��EB ¼ ½1� cosð�i�Þ�; (13)

we find �	 2:211 (Swave) and �	 1:501 (Pwave), again
in quite good agreement with the fit results. The remaining
small discrepancies can be attributed to the mixing with
higher partial waves induced by the lattice discretization
and the fact that we have not performed a continuum
extrapolation to vanishing lattice spacing.
Summary and outlook.—In this Letter, we have derived

an explicit formula for the mass shift of P- and D-wave
bound states in a finite volume. We have compared our
results with numerical calculations of the finite-volume
dependence for a lattice Gaussian potential and found
good agreement with predictions. For ‘ � 2 the mass shift
depends on the angular momentum projection m due to
different representations of the cubic group. The average
mass shift in a multiplet with arbitrary angular momentum
‘ can be expressed in a simple way, and apart from the
alternating sign it is independent of ‘. Applications to

FIG. 1 (color online). Wave functions with even (bottom) and
odd parity (top) for a one-dimensional square well potential in a
box with periodic boundary conditions. The dashed lines give the
infinite volume solutions for comparison.

FIG. 2 (color online). S- and P-wave mass shifts logðLj�mBjÞ
as functions of the box size L (in lattice units). We show the
results obtained from the direct difference Eq. (2) (crosses),
evaluation of the overlap integral Eq. (3) (squares), and discre-
tized versions of Eqs. (6) and (8) (circles). The dashed lines are
linear fits to the squares. In the inset, we show the relative
difference between the direct results and the overlap (squares)
and Green’s function (circles) data.

PRL 107, 112001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 SEPTEMBER 2011

112001-3



nuclear halo systems such as 11Be and molecular states in
atomic and hadronic physics appear promising. Our study
provides a general framework for future lattice studies of
molecular states with angular momentum in systems with
short-range interactions.

Finite-volume dependence can be used to probe the stru-
cture of a number of nuclei with conjectured �-cluster
substructures [21–23]. Recently, there have been ab initio
lattice calculations of the low-lying states of 12C using
effective field theory [24]. In particular, the energy for
the spin-2 state of 12C was calculated and found in agree-
ment with the observed value of �87:72 MeV, just a few
MeV below the triple-� threshold. It is not known how
angular momentum is distributed in this state, and the
study of finite-volume effects may help to resolve this
question.

Our results apply rigorously only to two-body systems.
However, there is empirical evidence that Eq. (9) also
gives the asymptotic L dependence for three- and higher-
body bound states at finite volume [25,26]. In these cases
the values of � and � are fitted empirically. We can show
this explicitly using an extension of our Gaussian lattice
model to three particle species. We take the particle masses
to be equal, m1 ¼ m2 ¼ m3 ¼ 2, and consider Gaussian
two-body potentials of the form (11) with the same
range, R ¼ 2, but different interaction strengths
V12
0 ¼ 2:5, V23

0 ¼ 3:0, and V31
0 ¼ 3:5 between the particles

12, 23, and 31, respectively.
In Fig. 3, we show the mass shifts for the lowest-

lying trimer states with quantum numbers JP ¼ 0þ and
JP ¼ 1�. All dimer states have less than half the binding
energy of these trimers, which indicates that there is no
underlying two-body molecular structure.

As before, we plot logðLj�mBjÞ against L. Analogous to
the two-body case, we find that �mB for JP ¼ 0þ is
negative, while �mB for JP ¼ 1� is positive. We also
find the same linear dependence for logðLj�mBjÞ at large
L. Quite interesting are the subleading corrections which
are especially strong for JP ¼ 1� at smaller volumes. This
may be due to competing finite-volume corrections from

negative S-wave and positive P-wave terms. These results
point to a possible new application of finite-volume cor-
rections to probe the radial distribution of angular momen-
tum in complicated bound state systems.
This research was supported in part by the DFG

through SFB/TR 16 ‘‘Subnuclear structure of matter,’’ the
BMBF under Contract No. 06BN9006, and by the U.S.
Department of Energy under Contract No. DE-FG02-
03ER41260. S. K. was supported by the ‘‘Studienstiftung
des deutschen Volkes’’ and by the Bonn-Cologne Graduate
School of Physics and Astronomy.

[1] D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009).
[2] A. Bazavov et al., Rev. Mod. Phys. 82, 1349 (2010).
[3] S. R. Beane, W. Detmold, K. Orginos, and M. J. Savage,

Prog. Part. Nucl. Phys. 66, 1 (2011).
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