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We consider the potential detection of chameleons using bouncing ultracold neutrons. We show that the

presence of a chameleon field over a planar plate would alter the energy levels of ultracold neutrons in the

terrestrial gravitational field. When chameleons are strongly coupled to nuclear matter, � * 108, we find

that the shift in energy levels would be detectable with the forthcoming GRANIT experiment, where a

sensitivity of the order of 1% of a peV is expected. We also find that an extremely large coupling � * 1011

would lead to new bound states at a distance of order 2 �m, which is already ruled out by previous

Grenoble experiments. The resulting bound, � & 1011, is already 3 orders of magnitude better than the

upper bound, � & 1014, from precision tests of atomic spectra.
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The accelerated expansion of the Universe is one of the
most puzzling discoveries of observational cosmology so
far. Amongst all the various attempts to explain this phe-
nomenon, such as the existence of a pure cosmological
constant justified by anthropic considerations, a possible
modification of gravity on large scales or the fact that the
Copernican principle could be violated, the existence of a
cosmological scalar field of the quintessence type [1–4] is a
strong contender just as cold dark matter is a good candi-
date to explain the rotation curves of galaxies and the large
scale structures of the Universe. Recently, models in which
scalar fields couple to matter [5] have been developed and
led to the motivated possibility of testing them in labora-
tory experiments. Indeed, a scalar field coupled to ordinary
matter might mediate a new long range force and would
show up in fifth force searches or equivalence principle
tests. In order to evade the resulting constraints, screening
mechanisms have been invoked whereby the field sur-
rounding a compact body becomes trapped inside and
does not lead to a large gradient outside dense objects. In
this Letter, we will focus on the chameleon mechanism
where a combination of the potential Vð�Þ of the scalar
field� and a coupling to matter leads to the existence of an
effective potential for the scalar field quanta which de-
pends on the local density � of the environment

Veffð�Þ ¼ Vð�Þ þ e��=MPl�: (1)

So far the best constraint on � comes from atomic
physics and reads � & 1014 [6]. When the potential is of
the runaway type with a vanishing minimum at infinity, the
effective potential has a density-dependent minimum�min.
This is the vacuum of the theory in a given environment.
The density-dependent minimum is such that the mass of
the scalar field also becomes density dependent. We will
focus on inverse power law models defined by

Vð�Þ ¼ �4 þ�4þn

�n þ � � � ; (2)

where we have neglected higher inverse powers of the
chameleon field. We will choose � ¼ 2:4� 10�12 GeV
to lead to the acceleration of the Universe on large scales.
The potential has a minimum located at

�min ¼
�
nMPl�

4þn

��

�
1=ðnþ1Þ

: (3)

The chameleon rest mass at the minimum is

m2
� � �

�

MPl

nþ 1

�min

: (4)

Thus, when considering a macroscopic body of size d as a
source of the field �, nonlinear effects of the theory
become significant when m�d * 1. In this case, only a

thin shell at the surface of the body contributes to the field.
The thickness of the shell (and the very presence of the thin
shell when considering small bodies) depends on the
strength � of the chameleon coupling to matter. Because
of the thin-shell effect, the chameleon could very well be
strongly coupled and still evade laboratory limits with
macroscopic bodies [7].
When searching for a fifth force, one can study the

interaction between two macroscopic bodies (torsion pen-
dulum, Casimir force, etc.) or one can use subatomic
particles. Macroscopic bodies have a better sensitivity for
a macroscopic range of the force, for example, the Seattle
Eöt-Wash experiment is the best probe for millimeter range
fifth forces [8]. Experiments studying the Casimir effect
are competitive probes of extra interactions in the mi-
crometer range. They could also test chameleon models
despite the presence of the thin-shell effect [9]. Subatomic
particles are probing shorter ranges. For example, neutron
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scattering data provide the best constraints at the nano-
meter scale [10].

In addition, there are experiments looking for the pos-
sible interaction of subatomic particles with a macroscopic
body. In this article, we consider the experiments probing
ultracold neutrons bouncing above a mirror and analyze
their sensitivity to the chameleon field. We expect a mea-
surable effect as the neutron will not display a thin-shell
effect due to the large extension of its wave function in the
terrestrial gravitational field above the mirror. The result-
ing shift in the neutron energy levels induced by the
unscreened change in the potential energy of neutrons
due to the chameleon could be detectable. In the following,
we will calculate the chameleon field produced by the
mirror used in the bouncing neutron experiments, and
then investigate how the neutron could probe this chame-
leon field on top of the mirror.

We first consider the chameleon profile when a dense
plate is embedded in a sparse environment. We consider an
infinitely thick plate z 2� �1; 0� of density � in contact
with a vacuum for z � 0 of density �1. The chameleon
profile satisfies the Klein-Gordon equation

d2�

dz2
¼ V 0

effð�Þ (5)

both inside and outside the plate where Veff is given by
Eqs. (1) and (2). We assume that both deep inside and at
infinity, the chameleon settles at an effective minimum
satisfying

V 0
effð�b;1Þ ¼ 0; (6)

where �b and �1 are, respectively, the bulk and infinity
vacua. In the following we shall assume that ��=MPl � 1
implying that

�

MPl

�b;1 ¼ �V 0ð�b;1Þ: (7)

Therefore, we find that in the bulk and outside the plate

d2�

dz2
¼ V 0ð�Þ � V0ð�bÞ ðbulkÞ; (8)

d2�

dz2
¼ V 0ð�Þ � V 0ð�1Þ ðoutsideÞ: (9)

Integrating these equations determines the value of
�0 ¼ �ð0Þ:

�0 ¼ Vð�bÞ � Vð�1Þ ��bV
0ð�bÞ þ�1V 0ð�1Þ

V0ð�1Þ � V0ð�bÞ ; (10)

and therefore

ffiffiffi
2

p
z ¼ �n=2þ11

�2þn=2

Z x

x0

yn=2dy

½1� yn þ nðynþ1 � ynÞ�1=2 ; (11)

where �>�0 when z > 0 and x ¼ �=�1. As long as

x � 1 we can approximate the integrand by xn=2 and
therefore

z �
ffiffiffi
2

p
2þ n

�n=2þ1
0

�2þn=2

��
�

�0

�
n=2þ1 � 1

�
: (12)

Now the mass of the chameleon at the boundary is

m2
� � nðnþ 1Þ�

4þn

�nþ2
0

(13)

and we find for the field profile

� ¼ �0

�
1þ ð2þ nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nðnþ 1Þp m�z

�
2=ð2þnÞ

: (14)

When the densities are �1 � � we have �1 	 �b and

�0 � �b

n
� 1

n

�
n
�nþ4MPl

��

�
1=ðnþ1Þ

: (15)

The contribution of the chameleon to the interaction
potential with matter particles of mass m is �m=MPl�
implying that the total potential gets an extra attractive
term in addition to the usual gravitational acceleration
g ¼ 9:8 m=s2:

�ðzÞ ¼ mgzþ �
m

MPl

�ðzÞ: (16)

Let us now analyze the phenomenological consequences
of the presence of the additional potential above the mirror.
We consider ultracold neutrons bouncing above the mirror,
with a mirror density of � ¼ 2:6 g=cm3 (1019 eV4 in natu-
ral units) to be specific. The vertical motion of the bounc-
ing neutrons is described by the stationary Schrödinger
equation for the wave function c :

� @
2

2m

d2

dz2
c þ�ðzÞc ðzÞ ¼Ec ðzÞ; c ð0Þ ¼ 0; (17)

wherem is the mass of the neutron. From now on we do not
work in natural units anymore and reintroduce the @ fac-
tors. As a generic feature of a quantum particle confined in
a well, the energy E can only assume discrete values
ðEkÞk¼1;2;...;1. In the absence of the chameleon effect, the

quantum bouncer problem (17) can be solved exactly in
terms of the Airy function Ai and its negative zeros
Aið��nÞ ¼ 0:

Ek ¼E0�k; c kðzÞ¼ ckAiðz=z0��kÞ for z� 0; (18)

where ck is a normalization factor, E0 ¼ mgz0 ¼ 0:6 peV,
and z0 is the (very large) spatial extension of the wave
functions:

z0 ¼
�

@
2

2m2g

�
1=3 ¼ 5:87 �m: (19)
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The unusual scale of the parameters of the quantum states
is due to the weakness of the gravitational force; it makes
this quantum system very sensitive to additional interac-
tions. Following the experimental discovery of the quanti-
zation of the energy levels of the bouncing neutrons at the
ILL reactor in Grenoble [11], an extensive program has
been started in order to probe this phenomenon with in-
creased precision [12–14] (a recent review on the topic can
be found in [15]). In particular, the forthcoming GRANIT
experiment being set up at the ILL [14] will measure the
energy levels with a precision better than 0.01 peV.
Ultimately, even better sensitivity could be reached,
down to 10�7 peV [16]. Wewill now argue that the neutron
bouncer is a competitive probe of the chameleon field in
the case of strongly coupled chameleons, since the addi-
tional term in (16) leads to two potentially observable
effects: the shrinking of the wave functions of the sta-
tionary states and the shifting of the energy levels.

In the case where the chameleon is strongly coupled
� 	 1, we find that m�z0 � 1 and the chameleon field

(14) seen by the ultracold neutrons a few micrometers
above the mirror simplifies:

�ðzÞ ¼ �

�
2þ nffiffiffi

2
p �z

�
2=ð2þnÞ

: (20)

The line in the parameter space (�, n) where m�z0 ¼ 1 is

shown as a green line in Fig. 1, justifying the simplification
(20). The blue line corresponds to the situation where the
mirror has a thin-shell effect of thickness z0. Importantly,
in this regime, the chameleon field �ðzÞ above the surface

is independent of the coupling strength �. This explains
why experiments with macroscopic bodies have no net
gain in sensitivity for large couplings: when � increases,
the thin shell at the surface of the test bodies shrinks and
there is no increase in the force. The situation is drastically
different for neutron gravitational quantum states.
Although the mirror has a thin shell, the neutron has
none, and the net potential seen by the neutron is linear
in � (it would be quadratic in � in the absence of the thin-
shell effect for the mirror). Also, it is important to notice
that the chameleon field is independent of the density of the
mirror.
To study quantitatively the phenomenology of the cha-

meleon term, it is useful to write the potential in the
following form:

�ðzÞ ¼ mgzþ �Vnðz=�Þ�n; (21)

with

Vn ¼ m

MPl

�

�
2þ nffiffiffi

2
p

�
2=ð2þnÞ

¼ 0:9� 10�21 eV

�
2þ nffiffiffi

2
p

�
2=ð2þnÞ

;

where � ¼ 1=� ¼ 82 �m and �n ¼ 2=ð2þ nÞ. Besides
the Planck mass, the chameleon field introduces a single
new characteristic distance scale �, which is remarkably
close to the size of the bouncing neutron wave functions.
Now let us study two effects of the additional potential:

i.e., a modification of the wave function of the neutron and
a shift in the energy levels. If strong enough, the attractive
new term �Vnðz=�Þ�n could, by itself, create an additional
bound state very close to the surface and would have shown
up in early experiments performed at ILL Grenoble. One
can estimate the size of the first quantum state from the
Heisenberg relation. For a classical bouncing motion of
turning point Z, the momentum oscillates with the follow-
ing maximal value:

pmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�Vn

p ðZ=�Þ�n=2: (22)

Imposing now the Heisenberg relation pmaxZ ¼ @ gives the
characteristic height of the ground state level:

Z ¼
�
@
2��n

2m�Vn

�
1=ð�nþ2Þ

: (23)

In order not to conflict with the Grenoble experiments, the
height Zmust be larger than about Zlim ¼ 2 �m. This kind
of approach has already been used to set constraints on
short range attractive Yukawa forces [17]. In our case we
find the limit

�<
@
2

2m

��n

VnZ
�nþ2
lim

; (24)

which is plotted in Fig. 1.
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FIG. 1 (color online). The chameleon exclusion plot. We find
that above the bottom green line the chameleon field is inde-
pendent of the coupling, above the top blue line chameleons
produce a quantum state with a size of 2 �m, and finally above
the red dashed line the chameleons shift the 3 ! 1 resonance by
more than 0.01 peV. We have also drawn the ultimate sensitivity
limit at the 10�7 peV level.
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Higher sensitivity to chameleons will be obtained with
the next generation of experiments observing induced
resonant transitions between two quantum states. In the
first stage of GRANIT, the transition 3 ! 1 of neutrons in
the terrestrial gravitational field will be magnetically in-
duced and the energy difference E3 � E1 will be measured
with an estimated accuracy of 0.01 peV. In absence of
exotic effects like the chameleon, the energy level expec-
tation E3 � E1 ¼ 1:91 peV is known very precisely from
(18). Now the chameleon potential induces a shift �Ei of
the energy levels Ei, which can be calculated at first order
in perturbation theory:

�Ek ¼ hc kj��ðzÞjc ki; (25)

where ��ðzÞ ¼ �Vnðz=�Þ�n is a good approximation to
the chameleon contribution to the potential for large�, and
jc ki are the unperturbed wave functions. We define the
overlap functions:

Okð�Þ ¼
�
c k

��������
�
z

z0

�
�
��������c k

�
: (26)

The overlap functions are calculated numerically for the
first three quantum states; the result is shown in Table I.
Then, the shift in the 3 ! 1 resonance energy becomes

�E3�1 ¼ �Vn

�
z0
�

�
�n½O3ð�nÞ �O1ð�nÞ�: (27)

In Fig. 1, we show the sensitivity of the first stage of
GRANIT using Eq. (27), which is roughly independent
of n: �> 108. This will greatly improve on the sensitivity
of atomic experiments. We also show the ultimate sensi-
tivity of the gravity-resonance-spectroscopy technique
covering most of the chameleon parameter space.

It is interesting to compare our results to the limits set by
macroscopic 5th force searches and equivalence principle
(EP) tests analyzed in [5] and reproduced in Fig. 1.
Although these experiments are intrinsically sensitive to
forces much weaker than gravity (especially for EP tests),
chameleons can hide thanks to the thin-shell effect for
large enough couplings �. Especially, in all fifth force
experiments measuring a force between two macroscopic
bodies, a shielding layer (to shield magnetic, electric, or
thermal fluctuations) of thickness at least 10 �m is in-
serted between the two bodies. This layer suppresses the
chameleon-induced interaction for large enough couplings
�. The exclusion zone in [5] neglected this effect which is
accounted for in our Fig. 1. Contrary to experiments using

macroscopic bodies, bouncing ultracold neutrons are
free of any neutronic thin-shell effect and allow one to
probe strongly coupled chameleons. Strongly coupled cha-
meleons could also be probed with axionlike particle
searches via the induced chameleon-photon coupling [18].
These experiments are sensitive to the coupling range
1011 <�< 1018 [19]. For GRANIT, it turns out that the
contribution from the magnetic energy to the density �1
can be safely neglected.
We are grateful to A. Barrau and to members of the

GRANIT Collaboration (in particular D. Rebreyend, V.
Nesvizhevsky, and K. Protassov) for valuable discussions.
Note added.—During the preparation of this Letter, the

discovery of resonant transitions of the neutron quantum
bouncer has been reported by the qBounce Collaboration
[20]. Although a detailed analysis of the systematic effects
is not yet available, the 1 ! 3 transition energy agrees with
the Newtonian prediction at the level of 0.1 peV. Thus, the
chameleon coupling to matter is constrained at the level of
�< 109 already.
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