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Many statistical mechanics problems can be framed in terms of random curves; we consider a class of

three-dimensional loop models that are prototypes for such ensembles. The models show transitions

between phases with infinite loops and short-loop phases. We map them to CPn�1 sigma models, where n

is the loop fugacity. Using Monte Carlo simulations, we find continuous transitions for n ¼ 1, 2, 3, and

first order transitions for n � 5. The results are relevant to line defects in random media, as well as to

Anderson localization and (2þ 1)-dimensional quantum magnets.
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Loop models—statistical mechanics problems whose
degrees of freedom are loops or randomwalks—are closely
tied to field theory and more conventional statistical me-
chanics models, and give an alternative view on critical
phenomena that has yielded new theoretical approaches
and tools. More concretely, loops appear as topological
defects, such as domain walls in two dimensions (2D)
and vortices in three; as polymers; in the high-temperature
expansions of lattice models, and in Monte Carlo ap-
proaches to quantum problems. Questions about their
statistics crop up in areas as diverse as Anderson localiza-
tion [1,2], turbulence [3], quantum chaos [4], cosmology
[5], optics [6], and frustrated magnetism [7].

While there has been great progress in understanding 2D
loop ensembles, the situation in 3D is less clear. This is
not solely due to the unavailability of exact results: many
qualitative questions are unanswered. Consider as an
example random curves appearing in disordered media—
‘‘deterministic walks in a random environment’’ (DWRE).
The broad applicability of results for percolation cluster
boundaries to 2D DWRE such as level lines of random
height functions is well known, as are various continuum
approaches to this problem [8–10]. But analogous 3D
problems, such as the statistics of vortex lines in random
fields, are not as well understood. Numerous problems of
this kind have been simulated [5,6,11], but it has not been
clear which are in the same universality class, or what the
relevant field theories should be.

In this Letter we consider a family of three-dimensional
loop models which are interesting from several points of
view. A special case has appeared in the study of Anderson
localization in 3D [1,2,12–14], and results also apply to
DWRE such as vortices. The loop models are also related
to ð2þ 1ÞD quantum magnets. They show transitions
between short-loop phases and Brownian phases in which
walks can escape to infinity. At critical points the loops
have a nontrivial fractal structure.

Our aim is to understand the continuum descriptions
of these models. We give an analytical mapping to lattice
problems with more conventional (local) degrees of
freedom. Coarse-graining then yields (compact) CPn�1

models or supersymmetric variants, field theories which
in two dimensions have been related to loop models by
Read and Saleur [10]; see also [15–17]. In addition, we
perform Monte Carlo simulations of the loop models,
obtaining their phase diagrams and accurate values for
critical exponents. These results support the identification
of the continuum theory, since we find the expected ex-
ponents in the case (the CP1 model) where they are known.
For the CP2 model we find exponents apparently for the
first time.
An important distinction is between oriented and unor-

iented loop ensembles. While we focus mainly on the
former, we argue that unoriented loops are described by
RPn�1 models. Separately, an extension of the present
work shows the general applicability of the CPn�1 and
RPn�1 sigma models in the limit n ! 1 to problems of
random curves in 3D disordered media [18].
Loop models.—We consider loop models defined on

four-coordinated, directed lattices, with two directed links
entering and two leaving each node. A configuration C of
completely packed, oriented loops is generated by pairing
up the incoming and outgoing links at each node in one of
the two ways compatible with their orientations (Fig. 1). At
each node, one of these pairings occurs with Boltzmann
weight p and the other weight 1� p, with 0 � p � 1; the
assignments are part of the definition of the model, along
with the choice of lattice. We also give the loops a fugacity
n. Let jCj be the total number of loops, and Np the number

of nodes where the weight-p pairing is followed. The
partition function is

Zloops ¼
X

C

pNpð1� pÞN1�pnjCj: (1)
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When the fugacity is a positive integer, it can be repro-
duced by a sum over n ‘‘ colors’’ for each loop. The models
with n ¼ 1 have the property Zloops ¼ 1: In this case, the

node configurations are independent random variables, and
the walks are DWRE. In general, as n does not flow under
renormalization [19], we think of it as labelling different
models, and of p as a parameter.

This general recipe can be used to construct various
models, depending on the lattice and node assignments.
Here we are interested in models with transitions between
localized and extended phases, and in the universal
behavior at the transition and in the extended phase. Our
simulations use Cardy’s 3D L lattice [12], which has cubic
symmetry, and a variant, the 3D K lattice, which differs in
its link orientations and phase diagram (Fig. 2).

Lattice magnet.—We rewrite Zloops in terms of local

‘‘magnetic’’ degrees of freedom which can be coarse
grained in a fairly straightforward way. In this we are
inspired by the well-known OðnÞ loop models [20]—here
we obtain instead a lattice CPn�1 model.

Introduce complex unit vectors zl ¼ ðz1l ; . . . ; znl Þ on the

links l of the lattice, and denote the integral over these
degrees of freedom by Tr (normalized so Tr 1 ¼ 1). Now
consider a Boltzmann weight which is a product of terms,
one for each node of the lattice. Labelling the incoming
and outgoing links at a given node as in Fig. 1,

Z ¼ Tr
Y

nodes

ðpðzyoziÞðzyo0zi0 Þ þ ð1� pÞðzyozi0 Þðzyo0ziÞÞ: (2)

This partition function reproduces the sum over loops with
the right weights. To see this, note that the terms in the
expansion of the product over nodes are in correspondence
with loop configurations C:

Z ¼ Tr
X

C

pNpð1� pÞN1�p

Y

L2C

tr
Y

l2L

ðzlzyl Þ: (3)

HereL is a loop, the outer product zlz
y
l is an n� nmatrix,

and ‘‘tr’’ is a trace in this space (the ordering of the last
product is given by the sequence of links onL). Now, since

Trzlz
y
l ¼ 1=n, we are left with one n� n trace, i.e., one

‘‘ color’’ index to sum, per loop. LetNl be the total number
of links on the lattice. Then,

Z ¼ 1

nNl

X

C

X

loop colors

pNpð1� pÞN1�p ¼ 1

nNl
Zloops: (4)

The Boltzmann weight (2) defines a classical magnet for
the ‘‘spins’’ z. In addition to the unitary global symmetry, it
has the local Uð1Þ symmetry zl ! ei�lzl, so our spins live
not on the sphere jzj2 ¼ 1 but on complex projective space,
CPn�1. This space degenerates to a point when n ¼ 1,
leaving no degrees of freedom. Thus we must either resort
to a replicalike limit n ! 1, or generalize (2) to a super-
symmetric theory by replacing z with a unit supervector
of nþ k bosonic and k fermionic components, c ¼
ðz1; . . . ; znþk; �1; . . . ; �kÞ. A nonzero number k of fermions
leaves the partition function and its loop representation
unchanged (using Trc c y ¼ 1=n, the loop expansion
goes through as before, with tr ! str) but yields more
operators, and is necessary to give a nontrivial theory
when n ¼ 1 (or n < 1).
Field theory.—The naive continuum limit of (2) is the

CPn�1 model. In a sigma model formulation, with an
auxiliary gauge field A to remove the unwanted phase
degree of freedom, the Lagrangian density is

L ¼ 1

g2
jð@� iAÞzj2; with jzj2 ¼ 1: (5)

The SUSY version, the CPnþk�1jk model, is got by z ! c .
A crucial point in any formulation is that the gauge field is
compact: the set of gauge transformations z ! ei�z,
A ! Aþ @� is larger than in noncompact Uð1Þ gauge

FIG. 2 (color online). Loops on the 3D K lattice at p ¼ 0. At
p ¼ 1, they become infinite straight trajectories (crossing at
nodes).

FIG. 1 (color online). Pairings at a node (with associated
weights), and the labeling of links used in (2).

FIG. 3 (color online). Phase diagrams for the K and L lattices.
Continuous transitions are indicated by blue dots and single line
and first order transitions by red dots and double line.
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theory as� can jump by 2�. This implies that Dirac strings
of flux 2� incur no cost in action, and that in integrating
over A we must include Dirac monopole configurations
with quantized charge [21].

Work on deconfined criticality [22] has made clear that
compactness is a subtle issue, so it is useful to have another
route to the continuum limit for the loop models. We use
the transfer matrix to extract a ð2þ 1ÞD quantum SUðnÞ
antiferromagnet [23,24] as an intermediate step—for an
analogue in two dimensions, see [10,15]. This procedure,
to be described in [25], clarifies the compactness of A.

Finally, an alternative to (5) is to use explicitly gauge-
invariant degrees of freedom. The two- color case n ¼ 2
reduces simply to the Oð3Þ (classical Heisenberg) model
via S� ¼ zy��z, with � a Pauli matrix, and indeed the
loop models with n ¼ 2 show the usual Oð3Þ exponents as
described below. For general n (without fermions) we can
use the traceless matrix Q ¼ zzy � 1=n.

Correlators.—In 3D, the CPn�1 model has a transition
between a disordered phase and an ordered phase with
2ðn� 1Þ Goldstone modes (or 2½nþ k� 1� bosonic
Goldstone modes and k complex fermions). Translating
correlators of gauge-invariant operators into loop language
shows that the former corresponds to the localized and the
latter to the extended phase of the loop model.

Consider GNðrÞ, the probability that two small regions
separated by a distance r are connected by N distinct
strands of loop. In the localized phase and at a critical
point all loops are finite, and GNðrÞ is nonzero only for
even N. G2ðrÞ, the probability that two distant points lie on
the same loop, is proportional to htrQð0ÞQðrÞi, and higher
correlation functions G2MðrÞ can be written as two-point
functions of operators ðz1 �z2ÞM. In the localized phase Q is

massive and G2ðrÞ � r�1e�r=�. The typical loop size �
diverges on approaching the critical point at p ¼ pc, as
�� jp� pcj��, and at criticality G2ðrÞ � 1=r1þ�, where
� is the anomalous dimension of the gauge-invariant spin
Q (or the Heisenberg spin Swhen n ¼ 2). A simple scaling
argument [9,26] relates � to the fractal dimension df of the

critical loops, and to the exponent 	 governing the distri-
bution, PðlÞ � l1�	, of the length l of the loop through a
given link:

df ¼ 5� �

2
; 	 ¼ 11� �

5� �
: (6)

Since we expect � to be small, df will be close to 5=2.

Interestingly, the mean field value � ¼ 0 does not give
the ‘‘trivial’’ fractal dimension of two—this is due to
confinement of z into a gauge-invariant composite field.
Confinement also has an interpretation as a relation
between different loop ensembles (essentially worldlines
of z versus worldlines of S) when n ¼ 2.
An important basic consequence of the CPn�1 descrip-

tion is Brownian behavior in the extended phase, which
has been observed but not derived in related problems
[5–7,11,13]. In this phase, contributions from finite strands
of infinite walks make GNðrÞ nonzero for both even and
odd N:GNðrÞ � r�N . These are Brownian exponents (each
factor of 1=r is just the probability that a random walker
visits a given site at distance r from its origin) and imply a
fractal dimension of two. They follow from free field
theory for the Goldstone modes, allowing for the fact
that both the properties of long loops and symmetry break-
ing in the CPn�1 model are sensitive to boundary condi-
tions. If walks can end on the boundary, ‘‘infinite’’ walks
are those that do so: they have typical length of order L2.
With periodic BCs, all walks form closed loops: though
Brownian, the infinite loops have typical length of OðL3Þ,
since a random walker trapped in a region of linear size L
will on average visit OðL3Þ sites before refinding his start-
ing point. The probability of a given link lying on an
infinite loop is proportional to the order parameter, so
varies as jp� pcj
 close to pc.
Unoriented loops.—Models with unoriented loops are

also interesting, e.g., in relation to polymers and Z2 vorti-
ces. Similar arguments relate them to RPn�1 sigma models,
with real spins. In the models considered above, allowing

FIG. 5 (color online). First order transitions at n ¼ 5: (main
panel) the jump in nw on the K lattice and (inset) in nþ on the 3D
L lattice.

FIG. 4 (color online). Scaling collapse for nw (p, L) on the 3D
K lattice. Main panel: n ¼ 2; inset: n ¼ 3.
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node pairings which do not respect the link orientation—so
loops have no well-defined orientation—corresponds to a
perturbation �L / tr QTQ, favoring real Q and causing a
crossover to RPn�1 behavior.

Deterministic walks in a random environment.—A key
outcome of this work is the general applicability of the

CPkjk model to oriented loops in short-range correlated
random media—most notably various kinds of vortices,
such as optical vortices [6], cosmic strings [5], XY vortices
in the paramagnetic phase [18], and ‘‘tricords’’ in tricolor
percolation [11]. The striking compatibility of the expo-
nents in [11] and in the n ¼ 1 loop model [13] confirms
that these problems are in the same universality class.
Derivations will appear separately [18].

Numerical results.—We use Monte Carlo simulations to
study the loop model (1) on the 3D K and L lattices
introduced above, for integer n in the range 1 � n � 10.
We take samples of linear size 32 � L � 100 in units of
the link length, with periodic BCs. The fugacity n is
introduced via loop colors, and two types of elementary
Monte Carlo move are employed: either a change in the
color of one loop, or a change in the configuration of a node
whose links all carry the same color. Typical run lengths
involve of order 105 Monte Carlo steps of each type, per
loop or node, respectively. For details, see [25].

Phase diagrams are shown in Fig. 3. The 3D K lattice is
constructed to have only short loops at p ¼ 0 but infinite
ballistic trajectories at p ¼ 1. Simulations show a single
transition between a localized and an extended phase,
which is continuous for n � 3, and first order for n � 5
in agreement with a simple large n treatment.

The 3D L lattice is symmetric under p ! 1� p and has
only short loops at p ¼ 0 or 1. For n � 3 it has an extended
phase around p ¼ 1=2, separated by continuous transitions
from localized phases at large and small p. For n � 5 it
has only localized phases, and a first order transition at
p ¼ 1=2. Work is in progress to resolve behavior at n ¼ 4
on both lattices. Previous Monte Carlo studies of CPn�1

[27,28] obtained a first order transition at n ¼ 4.
We present studies of critical behavior for transitions on

theK lattice at n ¼ 2 and 3. Results for the 3D L lattice are
consistent with universality when compared with the K
lattice at these values of n and with previous work [13] at
n ¼ 1. We examine two observables. One is the average
number nwðp; LÞ of curves spanning the sample in a given
direction. The other is the susceptibility, which can be
expressed [25] in terms of the average number nðlÞ of loops
of length l, as �ðp; LÞ ¼ L�3

P
ll
2nðlÞ.

Empirically, the scaling of the winding number, includ-
ing finite size corrections, is adequately described by the
form nwðp; LÞ ¼ fðxÞð1þ PmðxÞLyirrÞ, where: x is the scal-
ing variable, x ’ L1=�ð�pþ A�p2Þ; �p ¼ ðp� pcÞ; � is
the correlation length exponent; yirr < 0; PmðxÞ is a poly-
nomial of order m; and fðxÞ is constructed using splines.
Results are shown in Fig. 4. We fit �ðp; LÞ in a similar

manner, using the susceptibility exponent �. Values for yirr
[�1:0ð3Þ and �0:6ð4Þ, at n ¼ 2 and 3, respectively] have
large uncertainties, but those of � and � are much more
precise as finite size corrections are small.
For n ¼ 2 we obtain � ¼ 0:708ð5Þ and � ¼ 1:39ð1Þ,

fitting to over 300 data points. We believe that the consis-
tency of these values with previous high-precision studies
of the 3D classical Heisenberg model (� ¼ 0:7112ð5Þ and
� ¼ 1:3960ð9Þ [29]) provides compelling support for our
identification of the loop model with CPn�1. For n ¼ 3 we
find � ¼ 0:50ð1Þ and � ¼ 1:01ð2Þ. We are not aware of a
previous determination of exponents for CP2.
In contrast, for n � 5 we find clear evidence of first

order transitions on both lattices, as displayed in Fig. 5. For
the K lattice there is a rapid change in nwðp; LÞ as p passes
through pc, developing into a step with increasing L. For
the 3D L lattice nwðp; LÞ ! 0 for large L at all p. A
transition at p ¼ 1=2 between distinct localized phases is
signaled by a step in nþ ¼ hNpi=ðNp þ N1�pÞ, which can

be viewed as the internal energy density.
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