
Visualization of Dimensional Effects in Collective Excitations
of Optically Trapped Quasi-Two-Dimensional Bose Gases

Ying Hu1,* and Zhaoxin Liang2,†

1International Center for Quantum Materials, Peking University, Beijing, 100871, China
2Shenyang National Laboratory for Materials Science, Institute of Metal Research,

Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
(Received 8 March 2011; published 8 September 2011)

In quasi-two dimensions (quasi-2D), where excitations are frozen in one direction, the scattering

amplitudes exhibit 2D features of the particle motion and a 3D to 2D dimensional crossover emerges in

the behavior of scattering. We explore its physical consequences, capitalizing on a hidden connection

between the Pitaevskii-Rosch dynamical symmetry and breathing modes. We find broken Pitaevskii-

Rosch symmetry by arbitrarily small 2D effects, inducing a frequency shift in breathing modes. The

predicted shift rises significantly from the order of 0.5% to more than 5% in transiting from the

3D-scattering to the 2D-scattering regime. Comparisons with other relevant effects suggest our results

are observable within current experimental capabilities.
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One of the most fascinating aspects of many-body sys-
tems is the role of dimensionality [1,2]. In two dimensions
(2D), remarkable phenomena arise including high-Tc

superconductivity [3] and Berezinskii-Kosterlitz-Thouless
transition [4]. With the advent of ultracold gases in tight
confinement [5], one has unprecedentedly new opportuni-
ties to explore low-D behaviors, as well as dimensional
crossovers, in a highly controllable way [1].

Dimensional crossovers are characterized by hierarchi-
cal access to new energy and length scales. Bose gases
become quasi-2D when energetic restriction to freeze
axial excitations is reached [6,7]. Next, into the quasi-2D
regime, a regularization of the coupling constant due to
restricted kinematics leads to an appearance of a new
length scale a2D competing with the 3D scattering length
a3D [6]. Consequently, from accessing one extreme of
a3D=a2D to the other, two distinctive scattering regimes
are further identified and another dimensional crossover
emerges. One regime corresponds to a3D=a2D � 1 and
features a 3D character in scattering. Whereas, the opposite
a3D=a2D � 1 defines the 2D-scattering regime that shows
strong density dependence of a coupling constant [6]. In
passing, the kinematic reduction from 3D to quasi-2D in
crossing the energy hierarchy has been the focus of most
theoretical [7,8] and experimental efforts [5,9]. This work,
on the other hand, concerns the dimensional crossover in
the behavior of scattering induced by length-scale compet-
itions. Considering that tight confinement may fundamen-
tally alter binary atomic collisions; detailed analysis of
such crossover would open a new perspective toward
studying 2D many-body systems.

In this Letter, we are motivated to discuss visualizing
dimensional effects in the scattering process on collective
excitations of a quasi-2D Bose gas, all the way from the
3D-scattering to 2D-scattering regime with an increasing

ratio of a3D=a2D. With this goal in mind, we invoke a
hidden connection that exists in 2D among the scaling
transformation, the Pitaevskii-Rosch (PR) dynamical sym-
metry and breathing modes [10,11].
PR symmetry and breathing mode in (quasi-)2D.—As

pointed out in Ref. [10], a 2D Bose gas interacting via
g�2ðrÞ potential, with g being a constant, possesses a
scaling symmetry under the transformation r ! �r.
Associated with this scale invariance is an underlying
symmetry SO(2,1) in dynamics of corresponding harmoni-
cally trapped Bose gases [10,11]. Such dynamical symme-
try, discovered by Pitaevskii and Rosch [10], dictates a
universal frequency belonging with breathing modes.
Alternatively, deviations from this universality provide
sensitive measurements of quantum many-body effects
that break the PR symmetry. An example has been given
by a pure 2D quantum Bose gas in Ref. [12].
We now extend the above analysis of scaling property

and PR symmetry to quasi-2D. To this end, let us consider
typical schemes to produce quasi-2D Bose gases that in-
clude a 1D optical lattice Vopt ¼ sERsin

2ðqBzÞ. The lattice
period is fixed by qB ¼ �=d with d being the lattice
spacing, s is a dimensionless factor labeled by the intensity
of a laser beam, and ER ¼ @

2q2B=2m is the recoil energy
with @qB being the Bragg momentum. The quasi-2D re-
gime is reached when the energetic restriction 4t=� � 1 is
fulfilled, t being the tunneling rate and � the chemical
potential. In this regime, tunneling is negligibly small
compared to effects of tight confinement [7] and the system
[1] can be effectively modeled by

HQ2D ¼ X
j

p2
jx þ p2

jy

2m
þ gQ2D

X
j<k

�2ðrjkÞ: (1)
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Here, axial degrees of freedom are taken into account via a
kinematically renormalized coupling constant gQ2D that

reads [6,7]

gQ2D ¼ 2
ffiffiffiffiffiffiffi
2�

p
@
2

m

1

a2D=a3D þ 1=
ffiffiffiffiffiffiffi
2�

p
log½B=�2n2Da

2
2D�

;

(2)

with B ¼ 0:915 [7] and n2D ¼ nd being the surface den-
sity. Here, the identification a2D ¼ � [7] has been made,
with � characterizing the axial extension of local wave

function determined from d=� ’ �s1=4 expð�1=4
ffiffiffi
s

p Þ
[13]. The existence of two length scales in the coupling
constant is immediately evident from Eq. (2). The conse-
quences are (a) the appearance of a log density-dependent
correction as a manifestation of 2D effects in scattering, its
strength being measured by the ratio a3D=a2D, and (b) the
identification of two distinctive scattering regimes: the
3D-scattering regime a3D=a2D � 1 with weak 2D effects
and the 2D-scattering one a3D=a2D � 1 where kinematic
modification of the coupling constant is important.

At this point, it is instructive to recall most experiments
on 2D quantum gases to date [14], where a small ratio
a3D=a2D � 0:05 is usually pursued. In this case, the
density-dependent part consists of a 2% contribution to
gQ2D and is typically ignored. Accordingly, the 2D cou-

pling constant was frequently evaluated in the experiment

according to gQ2D ¼ ffiffiffiffiffiffiffi
8�

p
@
2a3D=ma2D. Such an approxi-

mation is also widely used in theoretical studies [8].
Nevertheless, we stress that in ignoring the 2D effects in

gQ2D, contained in higher orders of a3D=a2D, one may also

lose interesting physics associated with these fine struc-
tures in the coupling constant. Fundamentally, the scale
invariance of HQ2D in Eq. (1) is immediately violated for

even a 2% density dependence in gQ2D. The corresponding

PR symmetry thus inevitably breaks in the presence of
the 2D effect, as small as it is, and breathing modes deviate
from universality. An illustration is useful by using the
equations of motion for the corresponding excitation
operator FB ¼ P

iðx2i þ y2i Þ,
d2FB

dt2
þ4!2

?FB¼ 4

m

�
E�X

j<k

frj �rgQ2DþH:c:g�2ðrjkÞ
�
;

(3)

with E being the total energy of the system. Equation (3) is
equally valid classically as it is quantum mechanically
[10,11]. Compared to Ref. [10], the frequency shift from
the universal value of !B ¼ 2!? is evident with the
addition of the density-dependent correction of the cou-
pling constant. Moreover, as the 2D character in scattering
becomes increasingly pronounced for a3D=a2D � 1,
significant modifications in collective excitations are
expected.

Next, we calculate analytically the frequency shift in
breathing modes of a quasi-2D Bose gas, along the cross-
over from the 3D-scattering to 2D-scattering regime. To
begin with, we generalize the hydrodynamic equations [8]
to quasi-2D Bose gases in a harmonic trap VhoðrÞ ¼
1
2mð!2

?r
2
? þ!2

zz
2Þ within the local density approximation

[15],

@n

@t
þr � ½nðrÞ�� ¼ 0; (4)

@
@�i

@t
þ 1

mi

ri½�Q2DðnÞ þ VhoðrÞ� ¼ 0; (5)

with i ¼ x, y, and z. Here mi is the mass m for i ¼ x, y
and effective massm� for i ¼ z, respectively. Equations (4)
and (5) are justified by sufficiently weak tunneling which is
nevertheless nonnegligible to ensure full coherence of the
order parameter between different wells [8], and by assum-
ing the Thomas-Fermi (TF) limit [15]. The 3D density nðrÞ
is determined from �0 ¼ �Q2D½nðrÞ� þ VhoðrÞ, where �0

is the ground state value of the chemical potential, fixed by
the proper normalization of nðrÞ. The local equation of
state �Q2D is at the core of hydrodynamic analysis, which

can be derived from the density derivative of the ground
state energy corresponding to Eq. (1).
Ground state of a quasi-2D Bose gas.—To this end, we

first adopt from Ref. [16] a general expression for the
ground state energy of dilute Bose gases in the presence
of a 1D optical lattice,

Eg

V
¼ 1

2
~gen

2

�
1þ m~ge

2�2
@
2d

Fð2t=~genÞ
�
; (6)

with ~ge ¼ gQ2Dd and the function

FðxÞ ¼ ðxþ 1Þ
2

½ð3xþ 1Þ arctanð1= ffiffiffi
x

p Þ � 3
ffiffiffi
x

p �

þ �

2
log½ð2xþ 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x

p
Þ=x�

� �arcsinhð ffiffiffi
x

p Þ þ 2
Z ffiffi

x
p

0

tan�1ðzÞ
z

dz (7)

arises from beyond-mean-field contributions due to quan-
tum fluctuations. Equation (6), derived within the tight-
binding model and Bogoliubov approximation, is valid all
the way from the anisotropic 3D regime to the opposite
pure 2D one [16]. Proceeding from Eq. (6), we restrict
ourselves within the quasi-2D regime and hence take the
limit x ¼ 2t=n~ge � 1 where FðxÞ ¼ �=4� �=2 logx is
asymptotically approached. The result then reads

Eg

V
¼ 1

2
~gen

2

�
1þ A~ge

�
�

4
� �

2
log½2t=~gen�

��
; (8)

with A ¼ m=2�2
@
2d. Hereafter, we shall derive the �Q2D

and find breathing modes by solving Eqs. (4) and (5) in the
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limit
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

!z=!? � 1 for a3D=a2D � 1 and
a3D=a2D � 1, respectively.

3D-scattering regime.—Defined by a3D=a2D � 1, this
regime features a 3D character in scattering, with small
modifications from the 2D effect. Hence, by linearizing
Eq. (2) with respect to a3D=a2D, we obtain for ~ge ¼ gQ2Dd
in Eq. (8) as

~g e ¼ ~g

�
1� 1ffiffiffiffiffiffiffi

2�
p a3D

a2D
logðB=�2n2Da

2
2DÞ

�
; (9)

where ~g ¼ 4�@2a3Dd=
ffiffiffiffiffiffiffi
2�

p
ma2D is the familiar 3D lattice

renormalized coupling constant and the log density-
dependent term presents the leading 2D correction. The
�Q2D is then readily derived from Eq. (8), yielding

�Q2D ¼ ~gn

�
1þ 1ffiffiffiffiffiffiffi

2�
p a3D

a2D

�
1

2
� log

�
B

�2n2Da
2
2D

���
: (10)

Here, we have ignored effects of quantum fluctuations in
Eq. (8) that give higher order corrections with respect
to the pure 3D value ~gn. Finally, rewriting �Q2D ¼
~gn½1þ k2DðnÞ�, we identify k2DðnÞ ¼ a3D=ð

ffiffiffiffiffiffiffi
2�

p
a2DÞ�

½1=2� logðB=�2n2Da
2
2DÞ� as the first correction to the

3D mean-field equation of state arising from 2D effects.
From Eq. (10), one solves the equation for the 3D

ground state density by iteration and finds nðrÞ¼
nTF�a3D=ð

ffiffiffiffiffiffiffi
2�

p
a2DÞ½1=2� logðB=�2dnTFa

2
2DÞ�nTF, with

nTFðrÞ ¼ ½�0 � VextðrÞ�=~g being the 3D TF density. The
2D effects are then transferred to the 3D stationary shape of
a cloud. Linearizing Eqs. (4) and (5) with substitutions of
nðrÞ and Eq. (10) gives

m!2�nþ ~r � ½~gnTF ~r�n� ¼ �~r2½~gn2TF
@k2D
@nTF

�n�; (11)

with ~r 	 ½r?;rz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p �. Note that the axial harmonic

trapping frequency has been renormalized by the effect of

lattice ~!z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

!z. Equation (11) in the absence of
k2D recovers the usual 3D hydrodynamic equation in the
presence of a 1D optical lattice [8]. Against this back-
ground, the perturbation from the right of Eq. (11) leads
to a fractional frequency shift

�!

!
¼ � ~g

2m!2

R
d3r~r2�n�ðn2TF @k2D

@nTF
�nÞR

d3r�n��n
; (12)

where ! is the 3D mean-field result of collective
frequencies.

We are interested in transverse breathing modes in a very
elongated trap ( ~!z=!? � 1). Substitutions of �nðrÞ 

r2? ��0=m!2

? and !B ¼ 2!? into Eq. (12) yield

�!

!B

¼ 1

4
ffiffiffiffiffiffiffi
2�

p a3D
a2D

: (13)

For typical experiments to date [17], a3D ¼ 5:31 nm and
the lattice period d ¼ 297:3 nm. The frequency shift in

Eq. (13) can then be reached 
0:48% for s ¼ 4. As small
as it is, given an accuracy of 
0:3% in measuring collec-
tive frequencies within current facilities [18], this 2D
correction presents a visible effect in experiments [19].
It is worth noting that Eq. (12) applies to other low-lying

collective excitations as well. Particularly, it follows that

surface modes with ~r2�n ¼ 0 are unperturbed by dimen-
sional effects. Additionally, Eq. (12) is valid for various
anisotropies of harmonic traps. For example, in a disklike

geometry (
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

!z=!? � 1), one finds �!=! ¼
m�a3D=ð6

ffiffiffiffiffiffiffi
2�

p
ma2DÞ for the lowest compression mode

with the zeroth order dispersion ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p ffiffiffi

3
p

!z and
density oscillation �nðrÞ 
 z2 � 2m��0=3m!2

z .
2D-scattering regime.—In this regime, a3D=a2D � 1

and 2D effects determine the nature of scattering, resulting
in strong log density dependence of gQ2D in Eq. (2).

Meanwhile, effects of quantum fluctuations become
increasingly important in transiting deep into the
2D-scattering regime [1]. Hence, by substituting the gQ2D

in Eq. (2) into ~ge ¼ gQ2Dd and fully accounting for effects

of quantum fluctuations in Eq. (8), we obtain the equation
of state to the second order in ~ge,

�Q2D ¼ ~genþ ~g2en
m

4�@2d
½1� logð2t=~genÞ�: (14)

To find breathing modes, we solve Eqs. (4) and (5)
via the Castin-Dum-Kagan-Surkov-Shlyapnikov (CDKSS)
scaling ansatz [20,21]: n ¼ n0ðri=�iÞ=�j�j, �i ¼
ð _�i=�iÞri (i ¼ x, y, z). The scaling parameter �i thus obeys
the CDKSS equation

d2�i=dt
2 þ�2

i �i þ ð�2
i =�iÞFð�x; �y; �zÞ ¼ 0; (15)

with �xðyÞ ¼ !?, �z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

!z, and

F ¼ 1

mð!iÞ2hr2i i0
1

�i

Z
n0ðri=�iÞri

@�Q2D

@ri
dr (16)

being independent of the particular coordinate i. Then, lin-

earizing Eq. (15) and taking the limit
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

!z=!?�1,
one finds the fractional shift for breathing modes of a
quasi-2D Bose gas reading

�!

!B

¼
�
1þ 1ffiffiffiffiffiffiffiffiffi

2�3
p 1

a3D
a2D

þ 1ffiffiffiffiffi
2�

p log½B@!0=���
�
1=2 � 1;

(17)

where B ¼ 0:915 and @!0=� ¼ 1=�nð0Þa22D, with nð0Þ
being the density at the center of the harmonic trap. In typical
experiments, the gas is deep in the quasi-2D regime for
@!0=� ¼ 6 [14]. Thus, at the onset of dimensional crossover
in scattering defined by a3D=a2D ¼ 1, the fractional shift is
calculated as 5%, a significant rise in comparison with that in
the 3D-scattering regime.
Equations (13) and (17) are key results of this Letter.

Frequency shifts in both equations represent leading order
corrections to breathing mode frequency that has its origin
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in broken PR symmetry by 2D effects in quasi-2D.
Equation (13) shows that such effects in the 3D-scattering
regime are indeed small and only cause consequences
down to scales � 0:5%. This explains, therefore, their
invisibility in previous experiments [9,19] and also justifies
the approximation of gQ2D by a constant in previous stud-

ies [8,14], provided a3D=a2D � 1 is satisfied and the
physics concerned is on a scale larger than thatof dimen-
sional effects. On the other hand, we point out that a
precision of � 0:3% in measuring collective frequencies
[18] has already been established, offering opportunities to
probe many-body physics associated with fine structures in
the coupling constant. In contrast, Eq. (17) shows a dimen-
sional effect well in reach in experiments, giving an im-
portant implication that the physical nature of quasi-2D
Bose gases for a3D=a2D � 1may be profoundly influenced
by 2D effects in scattering and subsequent regularization of
the coupling constant.

Discussion.—Careful comparisons with other influences
have to be made, including finite size, nonlinearity, tem-
perature and vortex, etc. Finite size effects originate from
kinetic energy pressure typically ignored in the TF scheme
[15]. Its consequence on transverse breathing modes can be

analyzed via a sum rule approach [15] with ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3=m1

p
where m3 ¼ ð8@4=m2ÞðEkin? þ Eho? þ EintÞ and m1 ¼
ð2@2=mÞNhFBi are, respectively, the cubic energy weighted
and the energy weighted moments of the dynamic structure
factor. With the viral identity Ekin? � Eho? þ Eint ¼ 0,
one finds ! ¼ 2!? unaffected by the finite size effect
within the Gross-Pitaevskii approximation.

Nonlinear effect arises from large amplitude oscilla-
tions that induce mode coupling and shift collective fre-
quencies by �!=! ¼ A2� [22]. Here, the amplitude A
can be tuned to below 10%. In our case, we find the

coefficient � ¼ 5
2 �

2 ðq��2Þðqþ�4Þðq��5Þ
ð4qþ�q�Þðq��qþÞ2 ½�1þ 15

4
�2

q2þ
� � 15

16�
1

ðq��qþÞ2 ½�qþ þ 2�2qþ � 9�2 þ 8�2 � 9
4

ðq��4Þ
qþðqþ�q�Þ � 3

20 �
qþ�3
qþ�q�

½�10�2qþ þ 37�2 þ 11qþ � 54� with q� ¼ 2þ
3
2 �

2 � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�4 � 16�2 þ 16

p
. The final shift is � 10�4%

for typical trap anisotropy � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

!z=!? 
 0:05,
much smaller than dimensional effects. Additionally, ther-
mal effects have also been observed to cause unusually
small frequency shifts in transverse breathing modes of an
elongated condensate [11,23].

The issue of vortex is closely related to operational
anisotropy in excitation schemes. To excite transverse
breathing modes, it is required to quench transverse har-
monic trap frequencies in phase by �!xðyÞ ¼ �! � !?.
On the contrary, an out-of-phase operation with �!x ¼
�! and �!y ¼ �!0 gives rise to an excitation operator

F ¼ m!?ð�! þ �!0Þ=2 � FB þ m!?ð�! � �!0Þ=
2
P

ir
2
i ðY2;2 þ Y2;�2Þ (Ylm being spherical harmonics) re-

sulting in additional excitations of quadrupole modes. Such
a situation may be further spoiled by the presence

of a quantum vortex which splits the m ¼ �2 quad-

rupole modes by approximately ð!þ �!�Þ=2!? ¼
7!?ð15�N~a3D=a?Þ�2=5 [24]. For typical parameters
N ¼ 2� 106, �¼0:05, and a3D=a2D ¼ 0:05, we calculate
the shift as
0:07%, again negligibly small in comparison.
In conclusion, we find PR symmetry breaks in a quasi-

2D Bose gas for the arbitrary small presence of 2D effects
in scattering. The results consist of a shift of breathing
modes away from the PR-symmetry-dictated value. Such a
shift rises markedly from 0.5% to 5% in transiting from the
3D-scattering (a3D=a2D � 1) to the 2D-scattering regime
(a3D=a2D � 1), both observable within current experimen-
tal facilities. Observing this dimensional effect directly
would present an important step in revealing the interplay
between dimensionality and quantum fluctuations in
quasi-2D.
We thank Biao Wu for helpful discussions. This work is

supported by the NSF of China (Grants No. 11004200 and
No. 10825417), 973 Program (Grant No. 2010CB934603),
and IMR SYNL-TS Kê Research Grant.
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