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We analyze low-frequency vibrational modes in a two-dimensional, zero-temperature, quasistatically

sheared model glass to identify a population of structural ‘‘soft spots’’ where particle rearrangements are

initiated. The population of spots evolves slowly compared to the interval between particle rearrange-

ments, and the soft spots are structurally different from the rest of the system. Our results suggest that

disordered solids flow via localized rearrangements that tend to occur at soft spots, which are analogous to

dislocations in crystalline solids.
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Like liquids, solids can flow under applied shear
stresses. Crystalline solids flow via rare rearrangements
controlled by a population of lattice defects, namely, dis-
locations [1]. In disordered solids, rearrangements tend to
be localized [2–4], but there is no obvious way to identify
defects that might control them [5]. Can these rare local-
ized rearrangements occur anywhere, as in a liquid, or do
glasses possess a population of ‘‘soft spots,’’ analogous to
dislocations in crystalline solids, which are structurally
distinct and susceptible to rearrangement? Although useful
continuum models assume the latter [3,6], such a popula-
tion of spots has never been identified from structural
information.

In order to search for a population of soft spots, we must
start with a solidlike description of the glass. We begin
with harmonic theory, in which the linear response to an
applied stress is completely characterized by the normal
modes of vibration. This approximation breaks down be-
fore solids begin to flow, so one would not expect the linear
response to yield much insight into particle rearrange-
ments. However, recent evidence suggests that low-
frequency vibrational modes, which are generically more
prevalent in disordered solids than in crystalline ones [7],
can be quasilocalized. Such modes have unusually low
energy barriers to rearrangements [8] and are correlated
with rearrangements [9–13].

In this Letter, we use low-frequency modes to identify
a population of soft spots in a model glass. We find that
rearrangements begin at soft spots, that the population of
soft spots evolves slowly compared to the time between
rearrangements, and that there are structural differences
between soft spots and the rest of the system. We therefore
conclude that soft spots are good candidates for elementary
defects that control the flow of disordered solids.

We study a 50:50 binary mixture of soft disks with unit
mass and diameter ratio 1.4 in two dimensions, interacting

via a Hertzian potential V ¼ �ð1� r=RÞ5=2, where r is the
distance between the centers of two particles and R is the
sum of their radii. Results presented here are for jammed
packings with a packing fraction � ¼ 0:95, which is much
higher than the jamming transition at �c ’ 0:84. We have
also identified soft spots at values of � closer to the
transition [14]. Lengths and frequencies are in units of
the small particle diameter and the interaction energy �.
We employ Lees-Edwards boundary conditions to shear
the system with a strain step of 10�5. After each strain step
we relax the structure to its minimum energy to shear the
system athermally and quasistatically. We find that none of
the measured soft spot statistics depend on the strain, so the
data shown are for all strains.
With increasing applied strain, the shear stress increases

with a slope given by the shear modulus and then drops
abruptly when there is a rearrangement. The strain step
size is reduced to 2� 10�7 before each rearrangement.
Between rearrangements, the dynamical matrix M is cal-
culated at small strain intervals to obtain its eigenvalues
(corresponding to the square of the frequency) and eigen-
vectors (the vibrational modes) [15].
In this limit of zero temperature and strain rate, a re-

arrangement occurs when one vibrational mode (the criti-
cal mode) reaches zero frequency. At that critical strain �c,
the packing becomes unstable and the coordination of
particles in the packing changes. The initial rearrangement
can trigger an avalanche of additional particle motions
[16], so that the net displacements of the particles may
be very different from the critical mode and may involve
contributions from a number of modes [13]. However, in
solids at finite temperatures and strain rates, fluctuations
can interrupt or extend avalanches. Therefore, for the
remainder of this Letter we focus not on the avalanche
but on the reproducible initial particle rearrangement,
described by the critical mode [16].
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As the system is strained, the packing becomes less stable
and the mode frequencies tend to shift downwards. At a
given strain, onemight expect the lowest-frequencymode to
be the one whose frequency vanishes at the next rearrange-
ment. Figure 1 shows that this is not generally true—the
mode most similar to the critical mode lies at the lowest
frequency only for a small range of strains immediately
preceding the particle rearrangement [13]. Note that most
excitations at low frequencies are weakly scattered sound
waves with a strong plane-wave character. These excita-
tions coexist in the same frequency range as the quasilocal-
ized excitations [8]; as a result, the normal modes exhibit
characteristics of each. We therefore look at the entire
population of low-frequency modes to extract soft spots.

For a granular packing of N ¼ 2500 particles, we first
identify the Nm lowest-frequency modes in the spectrum of
the dynamical matrix and the Np particles in each of these

modes with the largest polarization vectors. The values of
Nm and Np are not chosen arbitrarily. Instead, as we will

show in detail below, we optimize these parameters to
maximize correlation with particle rearrangements and
show that the optimized N�

m and N�
p have clear physical

significance: They correspond to the energy and length
scales of soft spots.

Figure 2(a) illustrates the locations of the particles iden-
tified by the lowest Nm ¼ 30modes and Np ¼ 20 particles

for a particular configuration. Note that the largest polar-
ization vectors are spatially clustered into regions and that
the same regions appear in several different modes. Each of
the Np particles in each of the Nm modes is then assigned a

value of unity, while the remaining particles are assigned a
value of zero. We separate this binary map into localized
clusters or soft spots, grouping together particles with non-
zero contact forces between them, as shown in Fig. 2(b)
[17]. Thus, the population of soft spots at strain � is
represented by a binary vector Sð�Þ ¼ fSið�Þ 2 f0; 1gg,
where Si ¼ 1 if particle i is in a soft spot and Si ¼ 0
otherwise. In addition, we construct a binary vector for

each soft spot, indexed by �: s� ¼ fs�;ið�Þ 2 f0; 1gg,
with s�;i ¼ 1 if particle i is in a soft spot � and s�;i ¼ 0
otherwise. Thus, Sð�Þ ¼ P

�s�ð�Þ. Note that to calculate
the soft spots we used only structural information (the
particle positions and interactions). As a result, the soft
spots are structural, not dynamical, features.
We now calculate the correlation of each soft spot

s�ð�Þ with the next rearrangement at strain �c, Rð�cÞ ¼
fRið�cÞg, where Ri ¼ 1 if particle i has one of the n�
largest displacement vectors in the critical mode and
Ri ¼ 0 otherwise. Here, n� is the number of particles in
soft spot �. The correlation is [18]

Csr
�¼s�ð�Þ�Rð�cÞ

n�
þ½1�s�ð�Þ��½1�Rð�cÞ�

ðN�n�Þ �1: (1)

The quantity Csr
� is unity if s� and R are perfectly

correlated and zero if they are uncorrelated. The rearrange-
ment shown by the red arrows in Fig. 2 has Csr

1 ¼ 0:64with
the blue soft spot (the ‘‘best’’ soft spot with the highest
value of Csr, which we label as � ¼ 1).
The correlation Csr

1 depends on the number of modes Nm

and the number of particles per mode Np used to define the

spots. We choose N�
p and N�

m to maximize the correlation

Csr
1 [Eq. (1)] with the best soft spot, averaged over all

strains. We find N�
p ¼ 20 particles per mode with

N�
m ¼ 30 modes, corresponding to roughly 13 soft spots

in a 2500-particle system.
What is the physical significance of the optimized values

N�
m and N�

p? To understand why the N�
m ¼ 30 lowest-

frequency modes are singled out, we examine the distribu-
tion of polarization vector magnitudes for each mode.
Each normal mode is composed of N d-dimensional po-
larization vectors that specify the displacement of each
particle in the packing. Figure 3 shows polarization vector
distributions for (a) the 15 lowest-frequency modes and
(b) 50 intermediate-frequency modes. The locations of
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FIG. 1 (color online). The lowest ten normal mode frequencies
as a function of applied strain. There are two critical strains at
which a mode frequency approaches zero and particles rear-
range, at �c ’ 0:014 and �c ’ 0:0183. The color of each point
indicates the overlap of that mode with the critical mode at
�c ’ 0:0183. The lowest energy mode does not resemble the
critical mode until just before the particle rearrangement.

FIG. 2 (color online). Soft spots in a system calculated at
3:2� 10�3 units of strain before a particle rearrangement.
(a) Regions of large displacement in the Nm ¼ 30 lowest-
frequency modes. Bold circles highlight the Np ¼ 20 particles

with the largest polarization vectors, and different colors corre-
spond to different modes. (b) Soft spots generated by clustering
the particles highlighted in (a). Inset: Enlargement of the best
spot. Red arrows indicate the displacement of each particle
during the next rearrangement.
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these regimes are indicated on a plot of the density of
states Dð!Þ in the inset in Fig. 3(a).

Figure 3(b) shows that for modes in the middle of the
spectrum, corresponding to extended anomalous modes of
the type described by Wyart, Nagel, and Witten that con-
stitute the boson peak [7], the distributions appear to be
universal with a form given by a modified Gaussian or-
thogonal random matrix ensemble [solid line in Fig. 3(b)]
[14]. While most of the modes in the spectrum are well-
described by this universal curve, there are clear deviations
at the low- and high-frequency ends of the spectrum. At
the high-frequency end, the localized modes differ from
the universal curve but play no role in our analysis. At the
opposite end of the spectrum, Fig. 3(a) shows that the
lowest-frequency modes [Oð10Þ for a 2500-particle pack-
ing] also differ significantly from the universal curve [8], as
shown by the L2 distances between the distributions. This
number is consistent with N?

m ’ 30 and a different analysis
by Schober and Oligschleger [19]. Thus, N?

m measures the
number of low-frequency modes that differ significantly
from the anomalous modes.

To interpretN?
p , we estimate the size of an individual spot

by analyzing the number of particles that change neighbors
during ‘‘elementary’’ particle rearrangements. In our quasi-
static simulations, elementary particle rearrangements are
defined as those where the critical mode is at least 80%

correlated with the total displacement of all the particles
after the packing has reached a new mechanically stable
state. The results are not sensitive to the particular threshold
used as long as we exclude avalanches, in which one re-
arrangement triggers another, and so on. We find that the
average number of particles that change neighbors during
an elementary rearrangement is 10. A number of neighbors
of these 10 particles also shift significantly during a re-
arrangement. Thus, we interpret N?

p ’ 20 as a measure of

the size of a localized rearrangement.
The fact that N?

m and N?
p are physically meaningful

quantities implies that our method of identifying soft spots
is not arbitrary; it is physically justified. The soft spot
population is not too sensitive to Np and Nm near their

optimal values as long as the fraction of particles in soft
spots is approximately�ss ¼ 0:1. If Nm and Np are chosen

such that �ss differs significantly from 0.1, correlations
between spots and rearrangements are substantially lower.
This suggests that other approaches based on good esti-
mates of the energy scale N?

m and size scale N?
p could also

correctly identify soft spots.
Next, we need to show that the identified soft spots are

good candidates for structural defects that control flow,
analogous to dislocations in crystalline solids. The follow-
ing properties of dislocations ensure that they control
flow: (i) Rearrangements tend to occur at dislocations, (ii)
dislocations are long-lived compared to the time between
rearrangements, and (iii) dislocations are structurally dis-
tinct from the rest of the system. We now show that soft
spots also possess these qualities.
(i) Rearrangements occur at soft spots. Each rearrange-

ment is much more strongly correlated with one soft spot
(the best one) than any of the others [Fig. 4(a)]. Thus, each
rearrangement occurs at one and only one soft spot in the
population. Moreover, the correlation with the best soft
spot is high even when the spots are identified far in
advance of the rearrangement. In Fig. 4(a), the solid
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FIG. 4. (a) Correlation of individual soft spots with the re-
arrangement field Csr as a function of how much additional strain
is required to initiate a particle rearrangement (�c � �) for
the best spot with greatest overlap (solid circles) and the
second- (open squares) and third-ranked (open triangles) spots.
(b) Correlation of soft spot distributions as a function of the
difference in strain between the distributions, �� [Eq. (2)]. The
vertical dashed line indicates the average strain between particle
rearrangements, showing that the distributions are correlated
across many rearrangements.
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FIG. 3 (color online). Polarization vector magnitude distribu-
tions for normal modes. (a) Solid lines are the 15 lowest-
frequency modes; the dashed line corresponds to a random
matrix ensemble. Inset: Points are the L2 distances between
the normal mode and random matrix distributions as a function
of the mode frequency rank. (b) 50 ‘‘extended anomalous’’
modes from the middle of the spectrum. Inset: Density of states
Dð!Þ as a function of frequency showing the frequency ranges of
the modes in (a) and (b).
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symbols show the correlation between the rearrangement
and the best soft spot as a function of the difference �c � �
between the strain at which the rearrangement occurs, �c,
and the strain at which the soft spot was identified, � < �c.
The correlation decays slowly with increasing �c � �; the
best soft spot calculated shortly after a rearrangement still
has a strong correlation with the next rearrangement.

(ii) The population of soft spots is long-lived compared
to the interval between rearrangements. To calculate the
correlation Css between soft spot distributions, we first
normalize the soft spot distribution so that it has zero
mean and unit variance: �S ¼ f �Sig for all particles i, where
�Si ¼ ðSi �

P
iSiÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iS

2
i � ðPiSiÞ2

q
. We then define

Cssð��Þ ¼ 1

�tot

Z �tot

0
d� �Sð�Þ � �Sð�þ ��Þ; (2)

where �tot is the total strain studied. Figure 4(b) shows that
Css decays slowly compared to the average strain between
rearrangements, ��. The decay strain is approximately the
product of �� and the total number of soft spots (of the
order of 10), consistent with our observations that each
rearrangement destroys a soft spot. This would imply that
Css has a nonzero decay strain even in the thermodynamic
limit where �� ! 0.

(iii) Soft spots are structurally different from the remain-
der of the packing. We average structural quantities over
soft spots and over randomly chosen sets of particles con-
taining the same number of particles as in soft spots and
compare the results. We find that the difference is signifi-
cant for several quantities, including the coordination
number (6:5� 1:8%), hexagonal bond order (29� 8%),
and excess free volume (18� 7:9%). However, we could
not identify the same population of soft spots by coarse-
graining these geometric quantities over the area of an
average spot. Thus, although soft spots are structurally
different, the difference is sufficiently subtle that one
cannot identify them correctly by using only these local
geometric quantities.

We also calculated the local shear modulus [20], aver-
aged over the area of a soft spot. As first noted in Ref. [20],
if one is sufficiently close to the rearrangement, the spatial
distribution of the coarse-grained shear modulus pinpoints
when and where the next rearrangement will occur.
However, it does not provide information about other soft
spots that do not rearrange.

The soft spot analysis provides fundamentally different
information. It identifies a collection of spots; the next
rearrangement will occur at one of these spots, but, unlike
the local shear modulus, the soft spot analysis cannot
single out that particular spot a priori.

So why is it useful to identify a population of soft spots?
The advantage becomes apparent when one considers the
effects of fluctuations that arise from temperature or shear.
Because of fluctuations, a rearrangement will not neces-
sarily occur in the spot with the lowest energy barrier but
could occur in any one of the spots with some probability.

In that case, a statistical description of the soft spot popu-
lation and rearrangements is needed [3].
Our results show that the soft spot population, unlike the

low-frequency vibrational modes from which it is derived
or regions of low local shear modulus, is long-lived com-
pared to the interval between rearrangements. This implies
that the population is robust to the fluctuations that arise in
quasistatically sheared systems. The same analysis can be
applied to inherent structures of systems at finite tempera-
tures and strain rates. Recent experiments on thermal
colloids show that soft spots are also robust at nonzero
temperatures [21]. Taken together, these results provide
strong evidence that the spots do indeed constitute the
structural defects relevant for flow in disordered solids.
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