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A theory is presented which allows us to accurately calculate the density profile of monovalent and

multivalent counterions in suspensions of polarizable colloids or nanoparticles. In the case of monovalent

ions, we derive a weak-coupling theory that explicitly accounts for the ion-image interaction, leading to a

modified Poisson-Boltzmann equation. For suspensions with multivalent counterions, a strong-coupling

theory is used to calculate the density profile near the colloidal surface and a Poisson-Boltzmann equation

with a renormalized boundary condition to account for the counterion distribution in the far field. All the

results are compared with the Monte Carlo simulations, showing an excellent agreement between the

theory and the simulations.
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Colloidal suspensions are of great practical interest for
biology, chemistry, and physics. The subject has a long
history going back more than a hundred years. In spite of
intense effort, many interesting phenomena which are
found in colloidal science have not been fully elucidated.
For example, it is well known that the stability of a hydro-
phobic colloidal suspension depends specifically on the
electrolyte present in suspension. The addition of multi-
valent counterions results in a rapid precipitation of col-
loidal particles. What is more surprising is that, even for
monovalent counterions, the stability of the colloidal sus-
pensions depends strongly on the precise nature of the
counterions. Thus, as one goes along the halogen series,
the critical coagulation concentrations of positive colloidal
particles can decrease by as much as an order of magni-
tude, when the anion is changed from fluoride to iodide [1].
Another interesting phenomenon found in suspensions
with multivalent ions is the reversal of electrophoretic
mobility [2,3], or equivalently charge reversal [4–7].
Under some conditions, it is also possible to observe
like-charge attraction between the colloidal particles of
the same sign of charge [8–12]. Many of these interesting
phenomena are the consequence of strong electrostatic
correlations between the counterions. The role of electro-
static correlations has been studied using simple models of
colloidal suspensions which neglect particle polarizability.
The standard Poisson-Boltzmann equation (PB)—used ex-
tensively in colloidal science—fails to account for the
induced charge at the particle-solvent interface, predicting
that the counterion density should remain unaffected by the
colloidal polarizability. In this Letter, we will show that the
induced colloidal charge significantly modifies the ionic
density distribution even for monovalent counterions. The
theory developed in this Letter allows us to accurately

predict the counterion density distribution both in the
weak (monovalent counterions) and strong (multivalent
counterions) coupling limits.
We will use the primitive model of colloidal suspension

in which colloidal particles are represented by hard spheres
of radius a and dielectric constant �c with the charge�Zq
distributed uniformly over the surface. Water is modeled as
a uniform dielectric of permittivity �w. The system is at
room temperature, so that the Bjerrum length, defined
as �B ¼ q2=�wkBT, is 7.2 Å. To account for the finite
concentration of colloidal particles, we will use a spheri-
cal Wigner-Seitz (WS) cell of radius R. The cell also
contains N ¼ Z=� �-valent counterions, each of radius
rc. For most colloidal suspensions of practical interest
�w=�c � 1. In this limit it is possible to show that the
exact Green function for the interaction between two
counterions is [13],

Gðr; r0Þ ¼ 1

�wjr� r0j þ
a

�wr
0jr� a2

r02 r
0j þ c cðr; r0Þ: (1)

The terms in Eq. (1) are, respectively, the electrostatic
potential produced by an ion located at r0, image charge

located at the inversion point a2

r02 r
0 inside the colloid, and

the counter-image charge spread uniformly from the in-
version point up to the center of the colloidal particle
[14,15],

c cðr;r0Þ

¼ 1

�wa
log

�
rr0 �r �r0

a2�r �r0þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4�2a2ðr �r0Þþr2r02

p
�
: (2)

Equation (1) can be used to obtain the counterion density
distributions using Monte Carlo (MC) calculations
as was shown in Ref. [13], and is a much faster
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alternative to simulations based on expansion in Legendre
polynomials [16].

To calculate the density profiles theoretically one often
relies on the mean-field PB equation. In the case of non-
polarizable colloidal particles, it is well known that for
monovalent counterions the PB theory is very accurate
[17]. On the other hand, for multivalent counterions there
are strong deviations from the prediction of PB equation
[17–22]. These deviations are a consequence of strong
electrostatic correlation between the multivalent counter-
ions close to the colloidal surface. For polarizable parti-
cles, however, the usual PB equation fails even for
monovalent counterions. In this case, the failure of the
PB equation is a consequence of the counterion-image
interaction—i.e., transverse correlations—which are left
out of the mean-field PB equation. The deviations from
PB theory augment with increasing counterion valence.
One of the objectives of the present work is to construct
a theory that can properly take into account both the ion-
ion and the ion-image interactions for polarizable colloidal
particles.

The electrostatic potential inside the WS cell satisfies
the exact Poisson equation

r2�ðrÞ ¼ Zq

�wa
2
�ðr� aÞ � 4�

�w
�q�ðrÞ; (3)

where �ðrÞ is the mean electrostatic potential at distance r
from the colloidal center and �ðrÞ is the mean counterion
density. We next suppose that the counterions are distrib-
uted in accordance with the Boltzmann distribution

�ðrÞ ¼ Ze���q�ðrÞ��Wð	;zÞ

4��
R
R
aþrc

drr2e���q�ðrÞ��Wð	;zÞ ; (4)

where � ¼ 1=kBT and z is the distance from the colloidal
surface, z ¼ r� a. In writing Eq. (4), we have implicitly
assumed that the main contribution to the potential of
mean-force, besides the electrostatic potential�ðrÞ, comes
from the ion-image interaction, Wð	; zÞ. Although this is
true for the monovalent counterions—weak-coupling
limit—this assumption breaks down for the multivalent
ions in the strong-coupling limit.

Unfortunately there is no exact way of calculating the
charge-image interaction, so that approximations must be
invoked. We proceed as follows. Consider a neutral one
component plasma (OCP) confined to a half-space by a
hard dielectric wall of �c � 0. For z < rc the hard core
repulsion requires that the electrostatic potential satisfies
the Laplace equationr2�ðrÞ ¼ 0, where we have assumed
that the neutralizing background of the OCP also starts
at z ¼ rc. For z > rc the electrostatic potential inside the
OCP satisfies the linearized PB equation r2�ðrÞ ¼
	2�ðrÞ, where 	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4���BZ

V

q
and V is the volume acces-

sible to the counterions. These two equations can be solved
explicitly to calculate the work that must be done to bring

an ion of the OCP from infinity to the distance z from the
wall [23]. We obtain

�W0ð	; zÞ � �W0ð	; rcÞrc
z

e�2	ðz�rcÞ; (5)

where

�W0ð	; rcÞ ¼ �2�B

2

Z 1

0
dk

k½s coshðkrcÞ � k sinhðkrcÞ�
s½s coshðkrcÞ þ k sinhðkrcÞ�

(6)

and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 	2

p
. Equation (5) accounts for two funda-

mental contributions: the ion-image interaction which is
screened with the Debye length 1=	, and for the loss of the
electrostatic solvation free energy experienced by the ion
near the interface. Since the wall has the dielectric constant
much smaller than that of water, the ion-image interaction
is strongly repulsive. However, note that even if there
would not be any dielectric discontinuity but simply a
hard wall, there still would be an electrostatic energy
penalty for bringing an ion from the bulk of electrolyte—
where its self-energy is efficiently screened by the back-
ground and by the other ions—to the interface, where the
broken symmetry prevents the efficient screening of its
electric field, resulting in a higher electrostatic self-energy.
Therefore, besides the ion-image repulsion, at finite ionic
concentrations there is an additional repulsive interaction
arising from the broken translational symmetry near the
wall-water interface, which is also taken into account in
Eq. (5).
It is instructive to rewrite Eq. (5) as

�W0ð	; zÞ ¼
�
�scð	; zÞ þ �W0ð0; rcÞrc

z

�
e�2	ðz�rcÞ: (7)

The first term in the square brackets, �scð	; zÞ ¼
�W0ð	; rcÞrc=z� �W0ð0; rcÞrc=z, with �W0ð0; rcÞ ¼
�2�B=4rc, is the repulsive energy arising from the broken
translational symmetry, while the second term is due to the
ion-image interaction. For colloids and nanoparticles, we
expect that �scð	; zÞ depends only weakly on the curvature
and can be approximated by that of a planar wall. On the
other hand, the ion-image interaction energy is strongly
dependent on the radius of curvature of the dielectric inter-
face and must be corrected when treating nanoparticles or
colloids. Using the Green function Eq. (1), the curvature
correction can be easily calculated. We find

�Wð	; zÞ ¼
�
�scð	; zÞ þ �2a�B

2ðz2 þ 2azÞ
þ �c ðzÞ

2

�
e�2	ðz�rcÞ; (8)

where

�c ðzÞ ¼ �2�B

a
log

�
1� a2

ðaþ zÞ2
�
: (9)
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These expressions are used in Eqs. (3) and (4) to account
for the colloidal polarizability. The modified PB equation
is then solved numerically to calculate the counterion
density profiles. In Fig. 1 the theory is compared with the
MC simulations for monovalent ions, showing an excellent
agreement. On the other hand, in the Supplemental
Information [24], we show that the usual PB equation
deviates significantly from the MC data near the colloidal
surface.

Although we find a perfect agreement between the the-
ory and the simulations for monovalent counterions, strong
deviations are observed when multivalent ions are present
in suspension [25]. This is similar to what has been pre-
viously found with nonpolarizable colloidal particles [20].
Near the colloidal surface, ionic concentration is very large
and the electrostatic interaction between the multivalent
counterions is very strong. This results in a formation of a
strongly correlated quasi-two-dimensional OCP on the
surface of colloidal particle. The strength of electrostatic

correlations can be quantified by the plasma parameter

� ¼ �3=2�B

ffiffiffi
Z

p
2ðaþrcÞ , which is the ratio of the characteristic elec-

trostatic to the thermal energy of condensed counterions
[17]. For � � 1 the counterions exhibit local hexagonal
order.
Consider a counterion of the condensed layer. If the

average separation between the condensed counterions is
much smaller than the radius of the nanoparticle, the
effects of the curvature will be screened (see
Supplemental Information [24]). Thus, in the limit

� � 1, a � rc, and
ffiffiffi
�

p
�2�B

ðaþrcÞ� � 1, we can neglect the cur-

vature of the colloidal surface and treat it as a hard wall
separating the low dielectric �c � 0 half-space from the
high-dielectric region occupied by the counterions, Fig. 2.
As a consequence of the hexagonal symmetry, the electric
field produced on the counterion by other condensed coun-
terions vanishes. Therefore, in the limit � ! 1, the ion
interacts only with the electric field of the charged wall and
the field produced by the images. The average separation h
between the condensed counterions of the hexagonal lat-

tice is h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�ðaþ rcÞ2�=ðZ

ffiffiffi
3

p Þ
q

, considering that all

Z=� are in the area 4�ðaþ rcÞ2. In the strong-coupling
limit, the counterion density distribution then takes a par-
ticularly simple form

�scðzÞ ¼ Ae�2ðz�rcÞ=lgc��WhðzÞ; (10)

where lgc ¼ 2a2

Z��B
is the Gouy-Chapman length and

WhðzÞ is the electrostatic potential of interaction between
the ion and its image and the images of its first nearest
neighbors,

�WhðzÞ ¼ �2�B

4z
þ 6�2�Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2zÞ2 þ h2

p : (11)

The first term in the exponential of Eq. (10) is due to the
ion interacting with the field of the charged hard wall. Note
that because �c � 0, the displacement field inside the low-
dielectric half-space vanishes, which leads to the factor of
2 in the exponent of Eq. (10), that is absent in the strong-
coupling theories of nonpolarizable particles [20]. The
normalization factor A is obtained using the charge neutral-
ity condition,

A ¼ Z=�

4�ðaþ rcÞ2
R
R�a
rc

dze�2ðz�rcÞ=lgc��WhðzÞ : (12)

In Fig. 3 we show the density distributions for different
colloidal systems containing either divalent or trivalent
counterions, � ¼ 2 and � ¼ 3, respectively. A very good
agreement is observed between the theory and the simula-
tions. As expected, the agreement improves for larger �
and when a ! 1 (see Supplemental Information [24]).
Far from the colloidal surface the concentration of

counterions drops rapidly. In this far-field region the coun-
terion correlations can be neglected and the mean-field
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FIG. 1 (color online). Density profiles of monovalent counter-
ions. Symbols represent simulation data and lines represent the
modified PB theory. The parameters of the simulations are
� ¼ 1, rc ¼ 2 �A; down triangles (a ¼ 150 �A and R ¼ 400 �A);
up triangles (a ¼ 100 �A and R ¼ 400 �A); diamonds (a ¼ 150 �A
andR ¼ 600 �A). The insets show the profiles close to the colloidal
surface.

FIG. 2 (color online). Hexagon of images at the surface.
In (A) the side view. In (B) the self-image and the nearest
neighbors.
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Poisson-Boltzmann theory once again becomes applicable.
To connect the strongly-correlated region near the colloidal
surface with the weakly correlated far-field, we use the
theory developed in Ref. [20]. The uniformity of the
chemical potential throughout the system requires that
the counterion concentration at the boundary of the WS
cell be related with the coarse-grained density in the
strongly correlated region described by Eq. (10) resulting
in equation

�bcðRÞ ¼ �cge
��q½�ðaþrcÞ��ðRÞ�þ�
c ; (13)

where �
c ¼ �1:65�þ 2:61�1=4 � 0:26 ln�� 1:95 is
the chemical potential of the strongly-correlated 2d OCP
[26] and �cg is the coarse-grained density of the 2d OCP,

�cg ¼
R
rcþlsc
rc

dz�scðzÞ
lsc

; (14)

where lsc ¼ 3:6 lgc [20]. Solving the usual PB equation

while enforcing the condition Eq. (13) at the cell boundary,
we obtain both the effective colloidal charge and the
counterion density profiles in the weakly correlated region.
In Fig. 4, we show the comparison between MC simula-
tions and the predictions of the present theory in the far-
field region. Once again an excellent agreement is found
between the theory and the simulations.
We have derived a new theory which allows us to

quantitatively calculate the density distributions of
monovalent and multivalent counterions in suspensions
of polarizable colloidal particles. In the case of the mono-
valent ions, we have derived a modified PB equation which
allows us to calculate the complete counterion density
profile. For multivalent ions, we used the strong-coupling
theory to obtain the density profiles near the colloidal
surface and the usual PB equation with the renormalized
boundary condition to calculate the density distribution in
the far field. All the results are in excellent agreement
with the MC simulations. Finally, we mention that the
same theory can be easily extended to treat metal
nanoparticles.
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[2] M. Quesada-Pérez, J. Callejas-Fernández, and R. Hidalgo-
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