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We derive a spin-dependent Hamiltonian that captures the symmetry of the zone edge states in silicon.

We present analytical expressions of the spin-dependent states and of spin relaxation due to electron-

phonon interactions in the multivalley conduction band. We find excellent agreement with experimental

results. Similar to the usage of the Kane Hamiltonian in direct band-gap semiconductors, the new

Hamiltonian can be used to study spin properties of electrons in silicon.
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Silicon is an ideal material choice for spintronics due to
its relatively long spin relaxation time and central role in
semiconductor technology. These characteristics are the
reason for the wide interest in recent spin injection experi-
ments [1–4]. To date, however, modeling of basic spin
properties in silicon required elaborate numerical methods
[5]. Notably, the availability of transparent spin-dependent
theories in direct gap semiconductors has spurred the
field of semiconductor spintronics [6]. The importance of
a lucid theory that accurately describes spin properties
of conduction electrons in silicon with relatively simple
means is thus clear.

In the first part of this Letter, we derive a Hamiltonian
that captures spin properties of conduction electrons in
silicon. The Hamiltonian is constructed by its invariance
to the symmetry operations of the space group G2

32, which

describes the symmetry of the X point at the edge of the
Brillouin zone [7,8]. In silicon, the X point is closer to the
absolute conduction band minimum than all other high
symmetry points. While k � p and tight-binding models
have been available for many decades [9–17], spin has
heretofore been ignored since spin-orbit coupling in Si is
weak [18–22] and lattice inversion symmetry causes spin
degeneracy. The present work is motivated by the emer-
gence of experimental work on spin-polarized electron
transport in silicon [1–4].

In the second part, this Hamiltonian is used to elucidate
the nature of intravalley and intervalley spin relaxation
processes in silicon due to electron-phonon interactions.
Our approach unravels the underlying physics, structure,
and symmetries of dominant spin-flip mechanisms. These
insights cannot be shown by state-of-the art numerical
studies in which only the magnitude and temperature de-
pendence are calculated [5]. We derive analytical forms
and selection rules of the dominant spin-flip matrix ele-
ments and explain the subtle distinction between spin and
momentum scattering processes. Importantly, it is shown
that spin relaxation due to intravalley scattering is caused
by coupling of the lower and upper conduction bands
(whereas intravalley momentum relaxation is governed
by dilation and uniaxial deformation potentials of the

lower conduction band). The accepted intravalley spin-
flip matrix element derived 50 years ago by Yafet does
not reveal this effect; furthermore, it was derived with only
approximate spin-orbit coupling parameters and inade-
quate wave vector components despite correctly predicting

the wave vector power law and hence its T5=2 dependence
[23]. Significant new insights regarding the structure of
intervalley spin relaxation are also revealed by the theory
and will be discussed in this Letter.
Figure 1(a) shows two pairs of conduction and valence

bands that are pertinent to this study. Near the X point,
states and energies in this subspace are found by

H
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c k;X4
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 !��������c k;X1

c k;X4

�
¼E
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Throughout this Letter, the crystal wave vector (k) is
taken with respect to the X point. The upper (lower)
4-components of a state, c k;X1

(c k;X4
), represent
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FIG. 1 (color online). (a) Calculated band structure near the
X point in silicon. The wave vector origin is taken at the X point
where a ¼ 5:43 �A is the lattice constant. Dashed (solid) lines
are results of an empirical pseudopotential model (8� 8
Hamiltonian). (b) Spin relaxation in silicon due to electron-
phonon interactions. Intravalley, g-process, and f-process con-
tributions [Eqs. (13), (15), and (18)] are denoted, respectively,
by the dashed green line, the dotted blue line, and the dash-
dotted red line. The � symbols denote experimental results (see
the text).
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coefficients of the X1 (X4) basis functions. These basis
functions belong to the X1 (X4) irreducible representation
of G2

32 [24]. Hcc and H�� denote, respectively, conduction

and valence band contributions, and Hc� ¼ Hy
�c describes

their coupling. These are 4� 4 matrices due to the two-
band and spin degeneracies at the X point of diamond
crystal structures [25]. Since the energy gap at the X point,
Eg;X � 4:3 eV, is significantly larger than other energy

scales, we use Löwdin partitioning [26] and lump the
valence band effect on the conduction band via

ðHccþHy
�cH�c=Eg;XÞjc k;X1

ic
¼E�jc k;X1

icjc k;X4
ic

¼ðE��H��Þ�1H�cjc k;X1
ic�H�c=Eg;Xjc k;X1

ic; (2)

where � refer to the upper and lower conduction bands.
The spin properties of conduction electrons are set by H�c,
whereasH�� has a negligible effect [24]. Using the method
of invariants [14], we derive Hcc and H�c at the vicinity of
the Xn point (X point along the n axis) [24]:

Hcc ¼ @
2=2m0ðk2I � I þ 2k0kn�z � IÞ; (3)

H�c ¼ �iPðk‘�y þ ikm�zÞ � I þ i�Xð�x � �m

� I � �‘Þ þ �½knði�z � �‘ � �y � �mÞ
þ ðik‘�z � km�yÞ � �n�; (4)

where kj denotes the jth component of the crystal wave

vector with respect to the Xn point (f‘;m; ng is any cyclic
permutation of the fx; y; zg crystallographic axes). �i and
�ikj components are due to spin-orbit coupling, where �i

refer to Pauli matrices. �i are invariant matrices describing
the two-band degeneracy, and here we choose �i ¼ �i.
A �B terms denote Kronecker products of 2� 2 matri-
ces. When k increases toward the � axis, the spin-
independent basis functions of this Hamiltonian follow

the compatibility relations: X1
1 !�1, X

20
1 ! �0

2, X
‘
4 !�‘

5,

and Xm
4 ! �m

5 [see Fig. 1(a) for notation and Ref. [11]

for details]. By using this basis, the spin-independent

parameters are @k0 ¼ �hX1
1jpjjX1

1i ¼ hX20
1 jpjjX20

1 i and

m0P ¼ @jhX1;20
1 jpjjXj

4ij, where j ¼ f‘;mg. In silicon, the

conduction band minimum position (where thermal elec-
trons are populated) is set by k0 � 0:15� 2�=a, and the

mass anisotropy is set by P � 9 eV � �A [11].

The model spin-dependent parameters are �X ¼
�jhX1;20

1 jðrV � pÞjjXj
4ij and � ¼ @�jhX1;20

1 jrjVjXj
4ij,

where � ¼ @=ð4m2
0c

2Þ and j ¼ f‘;mg. Using an empirical

pseudopotential model [27], we estimate �X � 3:5 meV
and �k0 � 1:5 meV. By substituting Eqs. (3) and (4) into
Eq. (2), the upper and lower conduction bands state
energies are

E� ¼ @
2k2n
2m0

þ @
2ðk2‘ þ k2mÞ

2mt

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0;n � E2

‘;m þ j�j2ðk2‘ þ k2mÞ
q

: (5)

m�1
t ¼ m�1

0 þm�1
c� is the transverse mass, where mc� ¼

@
2Eg;X=2P

2. Other parameters are E0;n ¼ @
2k0kn=m0,

E‘;m ¼ @
2k‘km=mc�, and � ¼ 2i�XP=Eg;X. Equation (5)

includes only the leading spin-orbit term [24].
A crucial aspect of the model is that Eqs. (2)–(4) allow

us to analytically express degenerate spin-dependent ei-
genstates such that hk; * j�zjk; +i ¼ 0 [23]. These eigen-
states are represented by 8-component normalized vectors.
The components are coefficients of the Xn-point basis

functions: fX20
1 "; X20

1 #; X1
1 "; X1

1 #; X‘
4 "; X‘

4 #; Xm
4 "; Xm

4 #g.
In the n ¼ z case (parallel to the spin quantization axis),
the vectors in the lower conduction band read

jk; *i ’
2
4 ffiffiffi

2
p

Ex;yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECð2E0;z þ ECÞ

q ;

ffiffiffi
2

p
�ðkx � ikyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ECð2E0;z þ ECÞ
q ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0;z þ EC

2EC

s
;
i�0ðkx þ ikyÞ

2Eg;X

;� Pkx
Eg;X

;� �0
X

Eg;X

;

� Pky
Eg;X

;� i�0
X

Eg;X

3
5T

; (6)

hk; + j ’
2
4�

ffiffiffi
2

p
�ðkx � ikyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ECð2E0;z þ ECÞ
q ;

ffiffiffi
2

p
Ex;yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ECð2E0;z þ ECÞ
q ;

�i�0ðkx þ ikyÞ
2Eg;X

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0;z þ EC

2EC

s
;
�0

X

Eg;X

;

� Pkx
Eg;X

;
i�0

X

Eg;X

;� Pky
Eg;X

3
5; (7)

where �0
X ¼ �X þ �jkzj, �0 ¼ 2i�0

XP=Eg;X, and EC is

the energy spacing between the conduction bands [twice
the square root in Eq. (5)]. For later use, we define an
important parameter �C 	 ECðk0Þ ’ 2@2k20=m0 � 0:5 eV,
which denotes the energy spacing at the valley center
(see Fig. 1). State expressions in the x and y valleys are
provided in the Supplemental Materials [24]. We can,
however, unify features along all crystallographic axes by
defining �:

� 	
8<
:
ky if n ¼ x;
ikx if n ¼ y;
kx þ iky if n ¼ z:

(8)

We first briefly discuss the spin mixing, which is a
measure of the total magnitude of spin-down components
in a j *i state (and vice versa). The spin mixing can reach
its maximal value (1=2) along certain directions at the edge
of the Brillouin zone where it is given by
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	ðkn¼0Þ¼ ð1þ
n;zÞ �
2
X

E2
g;X

þ1

2

j��j2
E‘;mþj�j2ðk2‘þk2mÞ

: (9)

This result elucidates the nature of the spin hot spot [5,28].
At the vicinity of the valley center, the mixing is of the
order of 10�6, and it is given by

	ðkn � k0Þ ¼ ð1þ 
n;zÞ
�
�X þ �k0

Eg;X � �C

4

�
2 þ

�
2j��j
�C

�
2
: (10)

A powerful application of the theory is in elucidating
the spin relaxation mechanisms. We focus on intrinsic or
nondegenerate n-type silicon, where spin relaxation is
governed by electron-phonon interaction across a wide
temperature range [5,23,29]. The relaxation rate is

1

�s;�
¼2�@

%Nc

Z
d3ke�Ek=kBT

Z d3k0

ð2�Þ3 jM
sf
� ðk;k0Þj2 1

��ðqÞ
�
�X

�
ðn�;qþ 1

2� 1
2Þ
½Ek0 �Ek���ðqÞ�

�
; (11)

where % ¼ 2:33 g=cm3 is the crystal density and Nc ¼
ð2�mdkBT=@

2Þ3=2 is an effective density constant (m3
d ¼

m0m
2
t ). �, q ¼ k� k0,��ðqÞ, and n�;q denote the phonon

mode, wave vector, energy, and Bose-Einstein distribution,
respectively. The þ (�) refers to phonon emission

(absorption) processes. Msf
� ðk;k0Þ ¼ hk0; + jM�;qjk; *i is

the spin-flip matrix element between electronic states in
the lower conduction band. A central point in spin relaxa-
tion of silicon is that mechanisms that dominate the mo-
mentum relaxation are not identical to those that lead
to spin relaxation. In the Supplemental Materials, the
Hamiltonian model is used to derive selection rules of
various spin relaxation processes [24]. Here we derive
explicit electron-phonon interaction forms and their ensu-
ing spin relaxation times.

Intravalley scattering.—Inspection of the electronic
states reveals that the intraband spin-flip coupling is
much smaller than the interband coupling between con-
duction bands. For example, at the valley center region
[2E0;z ! EC in Eqs. (6) and (7)], the product square am-

plitude of the dominant X1
1 " coefficient in jk; *i with the

X1
1 " coefficient in hk0; + j is smaller than with the X20

1 "
coefficient in hk0; + j by a factor of ð�C=Eg;XÞ2 ’ 1=64.

Interband coupling between X1
1 and X20

1 states is feasible,
for example, via the deformation potential �i, associated
with the off-diagonal strain component (e‘m, where n is the
valley axis) [11]. The symmetries of this coupling result in
a dominant role of the transverse acoustic (TA) phonon
mode [24], and the spin-flip matrix element reads

jMsf
TAðk;k0Þjn;n ¼ j�ð�� �0Þj

�c

jk� k0j�i: (12)

Intravalley momentum scattering, on the other hand,
is governed by the intraband dilation and uniaxial
deformation potentials (�d and�u) that lead to a dominant

role of longitudinal acoustic (LA) phonons [30]. In
Eq. (12), we have used a single effective deformation
potential �i ’ 8 eV [31], which absorbs the effect of
the valleys’ ellipsoidal energy dispersion. Substituting
Eq. (12) into Eq. (11) and using the long wavelength limit
�TAðqÞ ¼ @�TAq 
 kBT, where �TA ’ 5� 105 cm= sec
is the TA phonon speed, we get the average intravalley
spin relaxation rate

1

�s;i
¼ 128

9

mt

mc�

�
�X

�C

�
2
�
2md

�

�
3=2 �2

i ðkBTÞ5=2
@
4%�2

TAEg;X

: (13)

The T5=2 dependence was predicted by Yafet (see
pp. 75–80 in Ref. [23]). However, our theory reveals the
correct magnitude and hidden symmetries: coupling be-
tween conduction bands, TA mode dominant role, and the
involved wave vector components as shown in Eq. (12) via
the � parameter [defined in Eq. (8)] rather than jk� k0j2.
Intervalley g-process scattering.—In this umklapp

process, a phonon mode with wave vector qg � 0:3�
ð2�=aÞn̂ is needed to scatter electrons between the
ð�k0Þn̂ valleys [8]. g-process momentum scattering is
dominated by interaction with longitudinal optical pho-
nons [32]. The dominant g-process spin flips, on the other
hand, are governed by interaction with acoustic phonons
which are forbidden at zero order for momentum scattering
[24]. To understand this behavior, we note that replacing
kn ! �kn in the Hamiltonian of the �n valley [Eqs. (3)
and (4)] leads to an exchange of coefficients between

X1
1 $ X20

1 and X‘
4 $ Xm

4 states in Eqs. (6) and (7). As a
result, the dominant spin-flip mechanism during a g pro-
cess is governed by intraband coupling albeit at opposite
valleys (i.e., between respective X1

1 coefficients of jk; *i in
the n valley and hk0; + j in the �n valley). The resulting
spin-flip matrix element is

jMsf
g ðk;k0Þjn;�n ¼ Dg

j�ð�þ �0Þj
�c

: (14)

Note that when � ¼ ��0 the matrix element is zero in
accord with time reversal symmetry. The large longitu-
dinal component jk� k0jn � 2k0 relates to the dila-
tion and uniaxial deformation potential constants via

Dg � 2k0ð�d þ�uÞ � 4 eV= �A. As mentioned, this cou-

pling is associated with LA phonon modes where �g ¼
�LAðq ¼ 2k0n̂Þ � 21 meV. Substituting Eq. (14) into
Eq. (11), we get the average g-process spin relaxation rate

1

�s;g
¼ 32

9

mt

mc�

�
�X

�C

�
2
�
2md

�

�
3=2

ffiffiffiffiffiffiffi
�g

q
D2

g

@
2%Eg;X

� gðyÞ
expðyÞ� 1

; (15)

where y ¼ �g=kBT and gðyÞ is associated with the modi-

fied Bessel function of the second kind via:
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gðyÞ ¼
ffiffiffi
y

p
2

exp

�
y

2

�
K2

�
y

2

�
� 1þ 5y�3=2: (16)

Intervalley f-process scattering.—In this umklapp pro-

cess, a phonon mode with wave vector qf � k0n̂þ k0‘̂þ
ð2�=aÞm̂ is needed to scatter electrons between valleys

that reside in the n̂ and ‘̂ directions [8]. This wave vector
resides on the� axis, where spin (momentum) scattering is
dominated by phonon modes with �1 and �3 (�1) sym-
metries [24]. Spin relaxation is unique since it is carried via
coupling of valence and conduction bands. This coupling is
a result of the nonorthogonal bases of the n and ‘ valleys
that are involved in the transition (i.e., hX1

1;njXm
4;‘i � 0).

The spin-flip matrix element reads

jMsf
f ðk;k0Þj‘;n ¼ CiDi

�X þ �k0
Eg;X

: (17)

C1 ¼ 2 andC3 ¼ 1 if one of the involved valleys (n or ‘) is
collinear with the spin quantization axis (z) or C1 ¼ 0 and

C3 ¼
ffiffiffi
2

p
if both valleys are perpendicular to it [24].Di is a

scattering constant associated with a phonon mode of �i

symmetry in an f process. By using an empirical pseudo-
potential model, an adiabatic bond-charge model, and a
rigid-ion approximation (similar to the procedure in

Ref. [5]), the calculated values are D1 � 12 eV= �A and

D3 � 5 eV= �A. The �1ð3Þ symmetry is governed by the

upper (middle) acoustic branch with a phonon energy of
�f;1 � 47 meV (�f;3 � 23 meV). Using Eq. (17) and the

possibility of scattering to 4 valleys, we get the average
f-process spin relaxation rate

1

�s;f
¼16

3

�
�0

Xðk0Þ
Eg;X

�
2
�
2md

�

�
3=2 X

i¼1;3

AiD
2
i

@
2%

ffiffiffiffiffiffiffiffiffi
�f;i

q fðyiÞ
expðyiÞ�1

;

(18)

where �0
Xðk0Þ ¼ �X þ �k0, A1 ¼ 2, A3 ¼ 1, and yi ¼

�f;i=kBT. fðyÞ ¼ ffiffiffi
y

p
expðy=2ÞK�1ðy=2Þ is associated

with the modified Bessel function of the second kind
[
ffiffiffiffi
�

p
& fðyiÞ & 3 when 10 K< T < 400 K]. Figure 1(b)

shows the spin relaxation of all mentioned processes as a
function of temperature. Spin relaxation is dominated by
intravalley (f-process) scattering in low (high) tempera-
tures. The figure shows excellent agreement with experi-
mental results which have used electron spin resonance
(‘‘�’’ symbols at T > 150 K) [20,21] and spin transport
via a Larmor-clock analysis [33] and spin-valve magneto-
resistance [34].

In conclusion, we have derived a Hamiltonian that elu-
cidates the spin properties of conduction electrons in sili-
con. Applications of the Hamiltonian were used to extract
analytical spin relaxation times and to explain the electron-
phonon mechanisms that dictate the relaxation. The theory
also establishes a solid ground to analytically study spin
relaxation in doped silicon via scattering with impurities or

via exchange with holes. In addition, straightforward
extensions can be made to describe stressed silicon (incor-
porating strain-invariant parameters) or to study spin
properties in silicon heterostructures and nanostructures
by plane wave expansions. Finally, the theory guides
experimental studies of spin properties by providing lucid
insights into the various scattering mechanisms. New
experiments can be designed to extract the spin-orbit
coupling parameters (�X and �). These parameters can
then be used in the modeling of spintronic devices [35,36].
This work is supported by AFOSR Contract

No. FA9550-09-1-0493 and by NSF Contract No. ECCS-
0824075. We deeply thank Mr. Y. Song for providing
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