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For certain systems, the N-particle ground-state wave functions of the bulk happen to be exactly equal

to the N-point spacetime correlation functions at the edge, in the infrared limit. We show why this had to

be so for a class of topological superconductors, beginning with the pþ ip state in D ¼ 2þ 1. Varying

the chemical potential as a function of Euclidean time between weak and strong pairing states is shown to

extract the wave function. Then a Euclidean rotation that exchanges time and space and approximate

Lorentz invariance lead to the edge connection. This framework readily generalizes to other dimensions.

We illustrate it with a D ¼ 3þ 1 example, superfluid 3He- B, and a p-wave superfluid in D ¼ 1þ 1. Our

method works only when the particle number is not conserved, as in superconductors.
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The boundaries or edges of condensed matter systems
received scant attention until recent developments showed
them to be fertile areas of research both in the fractional
quantum Hall effect (FQHE) [1,2] and in topological in-
sulators and superconductors [3–9].

In two spatial dimensions, the edge dynamics is de-
scribed by conformal field theory [2] which was also
used to produce wave functions in the bulk [10,11].
Moore and Read [10] showed that one may view the
FQHE wave functions and the quasihole excitations as
conformal blocks in which both electrons and the quasi-
particle coordinates are treated on the same footing and
their charges and braiding properties are severely con-
strained. For an exhaustive review of many related topics,
see Nayak et al. [12].

We discuss problems where the N-particle ground-state
wave functions of the bulk happen to be exactly equal to
the N-point spacetime correlation functions at the edge, in
the infrared limit. What are the minimal ingredients neces-
sary to establish this equality? Are analytic functions or
d ¼ 2 conformal invariance required? We show that our
edge-bulk equality follows for a class of topological super-
conductors in various dimensions invoking only approxi-
mate Lorentz symmetry. The connections obtained here
using an effective low energy Hamiltonian differ from
Chen-Simons theory [13] in which the Hamiltonian van-
ishes and only nondynamical particles enter via Wilson
loops, as reviewed in Ref. [12].

To relate wave functions, which are defined at equal
time, to spacetime edge correlations, it is convenient to
use the Euclidean path integral formalism, which does not
single out time. A key result is a path integral representa-
tion of ZðJÞ, the generating function of N-body bulk
wave functions. This is accomplished by introducing a
time-dependent chemical potential that changes abruptly
at some Euclidean time. This procedure only works for

particle nonconserving problems, hence the restriction to
superconductors. We then drop some high derivative
terms which do not matter in the infrared, and express
ZðJÞ as a Grassmann integral over a Lorentz invariant
action. Rotating by 90� to exchange time and a spatial
direction we obtain the same topological superconductor
but with a spatial edge induced by the jump in chemical
potential. We find that the same ZðJÞ has nowmorphed into
the generating function for the edge correlation functions.
Three examples are given: the pþ ip superconductor in
D ¼ 2þ 1, 3He B phase in D ¼ 3þ 1 and a p-wave
superconductor (the Ising model) in D ¼ 1þ 1.
Extracting wave functions.—Recall that given a second-

quantized N-body state j�i with wave function
�ðx1; x2; . . . ; xNÞ we extract � using

�ðx1; x2; . . . ; xNÞ ¼ h;j�ðx1Þ; . . . ;�ðxNÞj�i; (1)

where h;j is the Fock vacuum and � is the canonical
electron destruction operator. For problems with variable
number of particles, let us define the generating function

ZðJÞ ¼ h;je
R

dxJðxÞ�ðxÞj�i (2)

which yields N-body wave functions upon differentiating
N times with respect to the Grassmann source JðxÞ.
We want to express ZðJÞ as a path integral when j�i is

the ground state of a Hamiltonian H without conserved
particle number. Since Euclidean time evolution for long
times projects to the ground state, we can obtain j�i as

j�i ¼ Uð0�;�1Þjii; (3)

where jii is a generic initial state and Uð0�;�1Þ is the
imaginary time propagator from�1 to 0�. Then we insert
the operator exp½R JðxÞ�ðxÞdx� at time 0. Finally, we
obtain the Fock vacuum by evolving a generic state hfj
from time þ1 to 0þ using a Hamiltonian H0 with a huge
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negative � that empties out fermions so that we may write
h;j ¼ hfjUð1; 0þÞ. Thus

ZðJÞ ¼ hfjUð1; 0þÞe
R

JðxÞ�ðxÞdxUð0�;�1Þjii (4)

which has a path integral representation.
Example 1 pþ ip.—The mean-field Hamiltonian is

[14,15]

H¼X
k

ðcyk ; c�kÞ
�k2 �� � � ðk1 � ik2Þ

�� � ðk1 þ ik2Þ �ð�k2 ��Þ

 !
ck

cy�k

 !
;

(5)

where 1, 2 are spatial indices and x3 will be time. We retain
the minimum k dependence in the pairing function, and
set the coefficient � ¼ 1 so that the gap function is
�ðk1; k2Þ ¼ k1 � ik2 Why then do we display the less
relevant �k2 term in the kinetic energy? The answer is
that without it, the physics is insensitive to the sign of �.
But as Read and Green show, it is what allows us to
associate the topologically trivial and nontrivial states
with �< 0 and �> 0, with the latter containing fermions
with momenta �k2 � �. Once we bear in mind this con-
nection between the sign of � and the topology, we drop it
in the subsequent computation of infrared wave functions.

Now the mean-field Hamiltonian in real space

H¼
Z

d2x

�
�yð��Þ�þ 1

2
ð�yð�i@1 � @2Þ�y þH:c:Þ

�
(6)

leads to corresponding Grassmann action for Uð0;�1Þ:

S ¼
Z 1

�1
d2x

Z 0

�1
dx3½ �cDc þ �c i@ �c þ c i �@c �; (7)

D ¼ ð�@3 þ�Þ; @ ¼ @

@z
; �@ ¼ @

@�z
: (8)

For the 0þ < x3 <1, we choose � ¼ �þ, a very large
negative number, associated with the Fock vacuum and
obtain, for all x3, the action including the source J:

SðJÞ ¼
Z 1

�1
d3x½ �cDc þ �c i@ �c þ c i �@c þ Jc�ðx3Þ�;

(9)

where D now contains a time-dependent �ðx3Þ that jumps
at x3 ¼ 0 from �� > 0 to �þ ! �1.

The generating function of the BCS wave functions is

ZðJÞ ¼
R½d �c dc �eSðJÞR½d �c dc �eSð0Þ : (10)

The story is depicted in the left half of Fig. 1: the
fermions travel unsuspectingly along in Euclidean time
x3 and slam like bugs onto the windshield at x3 ¼ 0�
when �ðx3ÞJc destroys them.

Since c and �c in Eq. (9) are independent Grassmann
variables, we integrate out �c to obtain the effective action
for just c to which alone J couples

Seffðc ; JÞ ¼
Z

d3x

�
c i �@c þ Jc þ c

1

4i@
DTDc

�
� S0ðJÞ þ Sind: (11)

For the infrared limit we keep just the Jackiw-Rebbi zero
mode [16] of the Hermitian operator

D TDðx3Þ ¼ ð@3 þ�ðx3ÞÞð� @3 þ�ðx3ÞÞ; (12)

that obeys Df0 ¼ 0

f0ðx3Þ ¼ f0ð0Þe
R

x3
0

�ðx0Þdx0 (13)

in the mode expansion of the Grassmann field:

c ðx1; x2; x3Þ ¼ f0ðx3Þc ðx1; x2Þ: (14)

This kills Sind, and upon integrating f20 over x3,

SeffðJÞ ¼
Z

dx1dx2c ði �@þ Jf0ð0ÞÞc : (15)

While this is indeed the action of a chiral majorana fermion
living in the 1� 2 plane we are not done: we need to show
that this fermion and this action also arise at the edge of the
same pþ ip system. But so far we have no edge. It will be
introduced shortly, but first a summary of results on the
wave function.
Pfaffian wave function.—Integrating over c in Eq. (15),

and suppressing the constant f20ð0Þ we find

FIG. 1 (color online). (a) Wave function: The original super-
conductor with � ¼ �� > 0 lies in the x1 � x2 plane and
evolves in Euclidean time x3 from �1 to 0�, projecting out
the ground state j�i. At x3 ¼ 0þ the chemical potential drops
abruptly to a large negative value ��, leading to the Fock
vacuum. (b) Correlation functions: a Lorentz rotation makes x1
the new time and x3 a the spatial coordinate along which the
system has an edge at x3 ¼ 0. The world sheet of the edge lies in
the x1 � x2 plane at x3 ¼ 0.
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ZðJÞ ¼ exp

�Z
d2rJðrÞ

�
1

4i �@

�
rr0
Jðr0Þ

�
: (16)

The two-particle wave function �ðr1 � r2Þ can be writ-
ten in terms of many related quantities:

� ¼ @2ZðJÞ
@J1@J2

¼
�
1

2i �@

�
r1r2

¼ ���1
r1r2 ¼

1

z1 � z2
(17)

and the N-particle wave function is Pfð 1
zi�zj

Þ. In (18) we

relate ZðJÞ and the conventional BCS wave function:

jBCSi ¼ exp

�
1

2

Z
�yðxÞgðx� yÞ�yðyÞdxdy

�
j;i (18)

and see that � ¼ �gðr1 � r2Þ.
The edge.—To relate ZðJÞ in Eq. (9) to a problem with

the edge we rewrite SðJÞ in Lorentz invariant form

SðJÞ ¼
Z

d3x½ ��ð@��Þ�þ JT��; where (19)

�¼ c

�c

 !
��¼�T"; "¼ i�2; @¼ ��@�; (20)

�1 ¼ �2; �2 ¼ ��1; �3 ¼ �3; (21)

JT ¼ J�ðx3Þð10Þ: (22)

Look at the left half of Fig. 1. We see our current
description of the superconductor: translationally invariant
in the x1 � x2 plane, regarded as the space in which the
p1 þ ip2 superconductor lives, and with a jump in � at
‘‘time’’ x3 ¼ 0. In this description, the functional integral
is saturated by one mode f0ðx3Þ, glued to the interface,
exactly like the electron gas at a heterojunction.

Extracting Hðx1; x2Þ from the Lorentz invariant action is
like taking the row-to-row transfer matrix. To derive the
Hamiltonian that governs the column-to-column dynamics,
we rotate the three dimensional spacetime by � �

2 around

the x2 axis to obtain the view shown in the right half of
Fig. 1. The points carry the same labels as before but the
spinor undergoes a rotation:

� ¼ c
�c

� �
¼ eið�=4Þi�3�1

c 0
�c 0

� �
¼ eið�=4Þ�1�0: (23)

Upon performing this transformation we end up with

Sð�0; JÞ ¼
Z

d3x

�
��0½�3@1 � �1@2 � �2@3 ����0

þ J�ðx3Þ
�
c 0 þ i �c 0ffiffiffi

2
p

��
; (24)

which describes exactly the same pþ ip superconductor
but in the 2� 3 plane (with 1 ! 3, 3 ! �1) with an edge
at x3 ¼ 0 with the �> 0 side containing the nontrivial
superconductor.

To see that the field c 0þi �c 0ffiffi
2

p that J couples to is precisely

the Majorana field that arises at the edge, consider solving
the equation for the zero modewhich follows from Eq. (24)
on dropping all x1, x2 dependence:

ð�2@3 þ�ðx3ÞÞ�0
0 ¼ 0) �0

0ðx3Þ ¼
1ffiffiffi
2

p 1

�i

 !
f0ðx3Þ (25)

the normalizable spinor solution indeed corresponds to the
operator 1ffiffi

2
p ðc 0 þ ic 0yÞ.

We are done, for we have shown that ZðJÞ is at once the
generators of electronic wave function in the bulk and of
correlation functions of the Majorana field at the edge.
For completeness, the edge Majorana field action fol-

lows from saturating the x3 dependence of �
0 as follows:

�0ðx1; x2; x3Þ ¼ 1ffiffiffi
2

p 1
�i

� �
f0ðx3Þc 0ðx1; x2Þ: (26)

Plugging this into the action Sð�0; JÞ one finds, upon
integrating the normalized function f00ðx3Þ over x3

Sð�0; JÞ !
Z

dx1dx2½c 0i �@c 0 þ Jf0ð0Þc 0� (27)

exactly as in Eq. (15), for the wave function.
Example 2 3He� B in D ¼ 3þ 1.—In a simplified

model of superfluid 3He� B, Cooper pairs have spin 1,
whose projection lies perpendicular to the momenta �k
[17,18]. The winding of this axis around the Fermi surface
in the weak pairing phase leads to its topological properties
[18,19]. The mean-field Hamiltonian for this time-reversal
invariant class DIII system [17,18] is

H ¼ X
p��0

�y
p�

�
k2

2m
��

�
�k�

þ f�k��0c k�c�k�0 þ H:c:g;
�k��0 ¼ ½"k � ����0 : (28)

The d ¼ 3 problem is just the d ¼ 2 problem to a
much greater degree:� goes from being a complex number
to a quaternion, and the spinless fermion is replaced by a
two-component spinor. Hence the weak-pairing wave
function is

g�i�j
ðrijÞ 	

½rij � �"��i�j

r3ij
(29)

and the many-body wave function is PfðgÞ, as in Ref. [8]:

�ðr1�1; r2�2; . . . ; r2N�2NÞ ¼ Pffg�i�j
ðri � rjÞg: (30)

The Lorentz invariant action for the wave function is

S ¼
Z

d4x
1

2
��½@���� where (31)
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�0 ¼ I 0
0 �I

� �
; � ¼ 0 i�"

i"� 0

� �
; (32)

�� ¼ �T 0 I
�I 0

� �
: (33)

Now the 0 and 1 directions are exchanged by R ¼
exp½i�2 i�0�1

2 �, so that J now couples to c 0þi�3c
0yffiffi

2
p which is

readily verified, as before, to be the gapless edge mode of
the rotated theory. The action for the edge theory obtained
by saturating with the zero mode is

Sedge ¼
Z

d3x
1

2
�c @c ; @ ¼ �j@j;

�c ¼ c Tð��2Þ:
(34)

Example 3.—We could equally well go down a dimen-
sion, to a spinless p-wave superconductor in d ¼ 1þ 1
[20] where � ¼ kx, which is also related to the quantum
Ising model, via the Jordan-Wigner mapping. The edge
theory is 0þ 1 dimensional, corresponding to a Majorana
zero mode, with L ¼ 1

2 c @xc . The pair wave function in

the weak-pairing phase is gðxÞ 	 sgnðxÞ.
One can use the parton construction [21,22] to generate

fractionalized analogs of the free fermion phases discussed
here. One such attempt, the fractionalized topological su-
perconductor, is discussed in [23].

Summary.—We have explained why the electronic wave
functions in the bulk coincided with the massless Majorana
correlation functions at the edge in certain problems. We
first wrote ZðJÞ ¼ h;jeJ�jBCSi as a path integral in which
the chemical potential abruptly jumped at in Euclidean
time. Dropping the ‘‘k2’’ terms, but not the connection
they provide between the sign of � and topology, we
obtained a Lorentz invariant action. Upon rotation by
�=2 the same action described a system that had an edge
and ZðJÞ had meanwhile morphed into the generating
function for edge correlations.

While our trick of rotating the axes can be tried in any
Euclidean path integral, Lorentz invariance is needed to
ensure that the bulk for which the wave function is written
is the same as the one with the edge after rotation. For
Laughlin states realized by applying a magnetic field to
fermions with a parabolic dispersion, we run into two kinds
of problems: the action is far from Lorentz invariant and
we cannot vary � to drain the sea of particles since their
number is conserved. We are working on deriving the
appropriate bulk-boundary connection.

The bulk-boundary correspondence presented here is not
limited to D ¼ 2þ 1 and is based on the approximate
Lorentz invariance of the mean-field action. It is very
different from that of topological Chern-Simons theories
with vanishing Hamiltonian and restricted to D ¼ 2þ 1.

Various topological superconductors are known corre-
sponding to different Altland-Zirnbauer classes [8]—can

our method be applied to any of them? In order to drain the
Fermi sea in our derivation, the band structure should itself
be trivial, and all the topology must be contained in the
pairing (such as the phase winding around the Fermi
surface in pþ ip). Such a construction is possible for
topological phases in class D in d ¼ 1 and d ¼ 2 (like
pþ ip), in class C in d ¼ 2 (like dþ id), and class DIII in
d ¼ 2,3 (He� 3 B phase). However, it appears to be not
possible for class CI in d ¼ 3 [24], which additionally rely
on nontrivial topology of the weak-pairing Fermi surface.
The entanglement spectrum of the bulk seems to deter-

mine the edge theory [25,26], which we now relate back to
the bulk wave function. Since the entanglement of a
gapped phase appears from near the cut, the entire bulk
wave function must be coded holographically in every
d� 1 dimensional sliver probed in the entanglement
analysis.
Previously, the connection between edge states and bulk

wave functions has played an important role identifying
new FQH states [10,27]. Our work suggests a similar
approach could be fruitful in identifying interacting topo-
logical phases in D ¼ 3þ 1.
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