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We propose a simple method for obtaining time reversal symmetry (T ) broken phases in simple lattice

models based on enlarging the unit cell. As an example we study the honeycomb lattice with nearest

neighbor hopping and a local nearest neighbor Coulomb interaction V. We show that when the unit cell is

enlarged to host six atoms that permits Kekulé distortions, self-consistent currents spontaneously form

creating nontrivial magnetic configurations with total zero flux at high electron densities. A very rich

phase diagram is obtained within a variational mean field approach that includes metallic phases with

broken time reversal symmetry (T ). The predominant (T ) breaking configuration is an anomalous Hall

phase, a realization of a topological Fermi liquid.
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Introduction.—Topological matter is one of the most
exciting subjects in today’s condensed matter physics.
The new states of matter have developed after the recog-
nition of a different phase transition pattern not based on
symmetry [1] inspired by the physics of the quantum Hall
effect [2] and the anomalous Hall (AH) effect [3]. The
possibility of getting Hall conductivity or Landau levels
without external magnetic fields [4,5] has given rise to
new areas of research and associated new materials such
as the topological insulators [6] and the even more inter-
esting topological metals [7]. These systems allow the
realization of beautiful fundamental ideas shared by dif-
ferent branches of physics like charge fractionalization or
Majorana fermions [8,9].

The interplay of the underlying lattice and the electronic
interactions plays a very important role in the physics of
these systems. In the topological metals time reversal
symmetry (T ) breaking without a magnetic field is the
key ingredient, which can be realized through current (or
bond) ordering: the electrons spontaneously form current
loops, which interact among themselves in such a way that
the state is self-consistently maintained. These phases were
discussed in other contexts in [10–13]. One of the earliest
examples of this behavior is due to Haldane [4] who
obtained a T broken state in a tight binding model in the
Honeycomb lattice with complex values of the next to
nearest neighbors hopping parameters. Ever since, the
search for realization ofT broken phases in lattice models
has been very intense in the literature, the proposed models
usually involving tight binding electrons with hopping
beyond the nearest neighbors as in the original Haldane
model, or very elaborated lattice structures as the kagome

or pyroclore. More recent attempts explore the possibility
of getting T broken phases from interactions in physical
lattice models. There again previous examples involve next
to nearest neighbor interactions, hoppings, or complicated
lattice structures [14–18].
In this Letter we propose a very simple way to get T

broken phases from interactions in standard physically
existing crystal lattices based on enlarging the unit cell.
In particular we consider a nearest neighbor tight binding
model with nearest neighbor Coulomb interaction in the
honeycomb lattice and show that T broken phases exist as
a stable ground state. The procedure can be applied to other
standard lattices that can be physically realized either as
existing materials or in optical lattices. The T broken
phases found in this work provide a simple realization of
the topological Fermi liquids described in [7,19].
The model.—Guided by previous works and searching

for renormalized hoppings of the type discussed in the
original reference [4] we consider spinless fermions in
the Honeycomb lattice with an extended Hubbard
Hamiltonian that reads

H ¼ �t
X
r;�

ayr brþ� þ V
X
r;�

ayr arb
y
rþ�brþ� þ H:c:; (1)

where t is the nearest neighbor hopping and V the nearest
neighbor Coulomb repulsion. We use standard notation
where ar (br) annihilates an electron at position r in
sublattice A (B). The two inequivalent sublattices A and
B are depicted in Fig. 1(a), along with the basis vectors
a1;2. The vectors � refer to the three vectors connecting

nearest neighbor sites, as shown in Fig. 1(a). To allow for
T broken phases as mean field solutions we use an
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enlarged unit cell, containing six atoms, which also
permits Kekulé-type distortion as shown in Fig. 1(b): The
links enclosed by a circle represent real values of the
hopping parameter bigger (or smaller) than the others.

The basis vectors of the enlarged cell in real space are a1 ¼
3a
2 ð�

ffiffiffi
3

p
; 1Þ and a2 ¼ 3a

2 ð
ffiffiffi
3

p
; 1Þ, and the respective unit cell

vectors in reciprocal space are b1 ¼ 2�
3
ffiffi
3

p
a
ð�1;

ffiffiffi
3

p Þ and

b2 ¼ 2�
3
ffiffi
3

p
a
ð1; ffiffiffi

3
p Þ. This gives rise to a tight binding model

whose wave function is a six component spinor of the form

c y
k ¼ ½ay1 ðkÞ; by1 ðkÞ; ay2 ðkÞ; by2 ðkÞ; ay3 ðkÞ; by3 ðkÞ�.
Since we are interested in the electronic phases with

broken T we do not consider for the time being charge
ordered phases. Under these conditions the most general
mean field Hamiltonian depends on nine complex parame-
ters �ij which can be grouped in a 3� 3 matrix, and that

can be shown to be k-independent. The mean field equa-
tions can be written in terms of the mean field averages of

the form hbyj ðkÞaiðkÞiMF as

�ij ¼ � 2

N

X
k

�ij
k hbyj ðkÞaiðkÞiMF; (2)

where N is the number of unit cells, �k is a 3� 3 matrix
given by

�k ¼
1 e�ia2�k 1

1 1 eiða1þa2Þ�k

e�ia1�k 1 1

2
664

3
775;

and the momentum sum runs over the folded Brillouin
zone (BZ). The nine complex order parameters �ij of our

mean field decoupling represent the nine bonds in the
enlarged unit cell, as pictorially represented in Fig. 1(c).
We solve Eq. (2) self-consistently with the constrain im-
posed by the Luttinger theorem [20], which reads (ignoring
logarithmic corrections in fermion number Ne),

nþ 3 ¼ Ne

N
¼ 1

N

X
k;l

nF½"lðkÞ; ��; (3)

where n is the electron density per unit cell relative to half
filling (which in our case corresponds to n ¼ 0), "lðkÞ is
the mean field dispersion for the l band, and nF½"lðkÞ; �� is
the Fermi distribution function. From Eq. (3) we get the
renormalized chemical potential � self-consistently.
The phase diagram and the AH phase.—The mean field

phase diagram is shown in Fig. 2 where we plot the differ-
ent phases (defined in the caption) as a function of the
interaction strength V in units of the hopping parameter t
and the electron density n. The density of states of the
Honeycomb lattice has two van Hove (VH) singularities
at energies E ¼ �t where the density of states diverges
logarithmically. This gives rise in the standard lattice to
electronic instabilities, the most prominent being the so
called Pomeranchuk instability corresponding to a metallic
phase with a deformed Fermi surface breaking the point
symmetry of the lattice [21,22]. In our phase diagram the
density varies from n ¼ 0 (half filling) to well above the
VH filling which with our convention occurs at nVH ¼
0:75. At each point in the phase diagram a mean field
Hamiltonian can be extracted which can be seen as a free
Hamiltonian with new effective hopping parameters renor-
malized by the interaction. At low values of V the sym-
metric phase (S) represents standard graphene with a
uniform renormalization of the hopping. Close to half
filling for increasing values of V slightly above V ¼ 2t
we recover the Kekulé phase (K) described in [8] which
evolves to a Pomeranchuk phase (P) through a finite
coexistence region (K þ P). Our calculation shows that a

2a1
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FIG. 1 (color online). (a) Two-atom unit cell and an example
of uniaxial distortion. The links enclosed by a circle are bigger
(or smaller) than the rest. (b) Six atom unit cell and Kekulé
distortion, allowed in the enlarged unit cell. (c) A pictorial
representation of the nine complex order parameters considered
in this work in the mean field decoupling of the Hamiltonian.

FIG. 2 (color online). Mean field phase diagram. Legend: (S)
symmetric phase, i.e., bare graphene with a uniform renormal-
ization of the hopping; (K) Kekulé distortion with hopping
renormalization as shown in the inset; (P) Pomeranchuk dis-
tortion of the Fermi surface and hopping renormalization as
shown in the inset; (K þ P) coexistence of Kekule and
Pomeranchuk distortions; (T-I) and (T-II) T broken phases
discussed at length in the text; (RS) broken symmetry state
with real hopping parameters, the distortion is neither Kekulé
type nor Pomeranchuk (reduced symmetry).
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standard Pomeranchuk instability with an anisotropic re-
normalization of the hoppings as shown in the inset, is a
very robust phase around the VH filling from zero to high
values of V. The preferred phase is a nematic one where the
C6 symmetry of the original lattice is broken to a C2. The
inset shows one of the three equivalent configurations
oriented along the crystal principal directions. The phase
named reduced symmetry (RS) occurring at higher values
of the electron density and the interaction is a broken
symmetry state with real hopping parameters. The symme-
try of the state is neither that of the Kekulé nor of
Pomeranchuk phases.

The novel topological Fermi liquid phases appear near
n ¼ 1. There are twoT broken phases labeled T-I and T-II
in Fig. 2 which are the most stable configurations just
above the VH filling for moderate values of V beginning
at V � 3t. They are pictorially described in Figs. 3(a)
and 3(b), respectively, where the nine complex order pa-
rameters of our mean field decoupling are shown. The
direction of the arrows represents the sign of the phase of
the given complex hopping, and the thickness of the line
represents its modulus. The phases can also be understood
as patterns of orbital currents. Current conservation at each
of the six atoms in the unit cell plus the zero overall flux
condition allow for only two independent T breaking
phases, T-I and T-II in our notation, defined by their
corresponding flux pattern in the unit cell. We note that
in addition to having the nontrivial fluxes described their
structure includes a Kekulé distortion of the bonds. The
discrete symmetries of the mean field Hamiltonian help to
classify the topological properties of a given phase [19].
The phase T-I breaks T and inversion I , but preserves
T I . The T-II breaksT but I is preserved. At a given point
of the phase diagram the Hall conductivity can be com-
puted from the single particle Bloch states j�lðkÞi asso-
ciated with the appropriate mean field Hamiltonian from
the expression:

�abð�Þ ¼ e2

@

1

NV

X
k;l

�ab
l ðkÞnF½"lðkÞ; ��; (4)

where V is the volume of the unit cell, and �ab
l ðkÞ is the

Berry curvature defined from the Berry connection:
Aa

l ðkÞ ¼ �ih�lðkÞjra
ðkÞ�lðkÞi, �ab

l ðkÞ ¼ ra
kA

b
l ðkÞ �

rb
kA

a
l ðkÞ. The T-II phase is of the type II in the classifi-

cation given in [19]: it breaks T but preserves I and the
Hall conductivity is generically nonzero. The T-I phase,
Fig. 3(a), breaks T and I but preserves T I so it corre-
sponds to a T broken phase of type I and has zero Hall
conductivity. We have further confirmed this picture by
numerical computation of the Hall conductivity Eq. (4). A
plot of the Hall conductivity as a function of the interaction
V for different values of the density in the region T-II of the
phase diagram is shown at the bottom of Fig. 4.
A very neat analysis of the topological properties of the

various metallic phases in the phase diagram can be done
by studying the low energy effective bands. We have
plotted the mean field band structure of the T-II phase in
Fig. 4 (top) obtained for the parameter values V ¼ 5t,
n ¼ 1:13. Focusing on the relevant bands around the
Fermi level, it is easy to understand the qualitative behav-
ior of the nonvanishing Hall conductivity in this phase. The
Fermi level crosses a massive Dirac structure around the �
point and so there is a nonzero contribution to the AH
conductivity of this cone. The nonquantized contribution to
the AH conductivity from the cone is given by [23,24]

�H ¼ e2

2h
Mðn;VÞ
j ~�ðn;VÞj , where Mðn; VÞ is the gap at the � point

φ

−φ

−2φφ

φ

(b)(a)

FIG. 3 (color online). Pictorial representation of the order
parameters corresponding to the T broken phases T-I (a) and
T-II (b) discussed in the text. The thickness of the bonds
represents the modulus of the hopping parameter and the direc-
tion of the arrows represents the sign of the phase when it has a
complex value. A bond without an arrow means a real hopping.
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FIG. 4 (color online). (Top) Two lowest energy bands for the
mean field Hamiltonian in the AH phase obtained with V ¼ 5t,
n ¼ 1:13. The hexagonal line marks the position of the Fermi
level. (Bottom) The Hall conductivity as a function of V for
various electron densities in the T-II regions of the phase
diagram. From lower to upper: n ¼ 0:98, 1.02, 1.03.
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and ~�ðn; VÞ is the renormalized chemical potential relative
to the middle of the gap, both of which depend strongly on
the parameters of the phase diagram. To better understand
the nature of the T broken phases we note that they arise
in the region of the parameter space close to the density
where there are four electrons per unit cell: n ¼ 1. This is a
very special filling: Not only it is commensurate with the
lattice, but it enhances the formation of current loops self-
consistently maintained at each hexagon following the
configurations shown in Fig. 3. In the T broken part of
the phase diagram, along the line n ¼ 1 the system be-
comes an insulator. The band structure near the Fermi level
is similar to the one shown in Fig. 4 (left) but the cones are
further apart and the Fermi level lies in the gap. Away from
this line we have the situation described before. The ma-
jority of the electrons will still form currents as these in
Fig. 3 and the excess (defect) electrons are responsible for
the metallicity of the system.

Discussion and Future.—Part of the physics discussed
in this Letter can be tested in actual graphene samples.
The simple deformation of the Fermi surface pointing to a
Pomeranchuk instability is a very robust phase that may
prevail even if other instabilities not considered in this
Letter are allowed. The AH phase can be more difficult
to observe in graphene since it occurs at higher values of
the interactions but it could potentially be tested in cold
atom experiments with optical lattices [25,26].

Other phases may compete with the ones described in
this Letter when charge decoupling and spin degrees of
freedom are included in the system. It will be interesting
to see how they compete with the AH phase obtained
in this Letter. In previous studies of similar systems found
in the literature, the AH phases evolved to spin Hall phases
when spin and the on-site Hubbard interaction U were
added [19]. Very appealing possibilities will open in the
Pomeranchuk region of the phase diagram in Fig. 2 when
spin is included along the lines of [27]. Spin effects have
also been explored recently in [28]. A preliminary analysis
of the phase transitions between topological and "trivial"
phases in Fig. 2 shows that they are of first order which
ensures their stability at least at the mean field level.

Conclusions.—We have found a spontaneous symmetry
breaking to an AH phase in a tight binding model in the
Honeycomb lattice with only nearest neighbor hopping
parameters and Coulomb interaction. The extra physics
required to get such a phase is provided by the folding of
the BZ that allows for spontaneous nonzero currents with
zero overall magnetic flux to form inside the unit cell
generating T broken phases. The T broken phase is
predominantly an AH metal of the type II in the classifi-
cation given in [19] where the interaction V gives rise to
orbital currents together with a Kekulé distortion.

The findings of this work open a whole set of possibil-
ities for new realization of exotic phases based on lattice
models. Enlarging the unit cell is a very simple procedure

that enormously increases the phase space of any given
lattice. This is exemplified in the model studied here where
in addition to the AH phase we have found a very rich
phase diagram even when neglecting spin and charge
density wave instabilities.
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