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At the so-called dynamic glass transition predicted by the mean-field replica approach equilibrium

liquid’s translational symmetry is spontaneously broken, albeit at the microscopic level. We show that this

fact implies the emergence of Goldstone modes and long-range density correlations. We derive and

evaluate a new statistical mechanical expression for the glass shear modulus.
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Introduction.—The difference between a liquid and a
solid manifests itself in their (linear) response to a small
volume-preserving shear deformation: a liquid flows,
whereas in a solid internal forces arise which are propor-
tional to and oppose the deformation. The solid’s rigidity is
an emergent [1] property: it amounts to transmitting inter-
nal forces opposing a volume-preserving deformation over
macroscopic distances but it does not originate from long-
range intermolecular interactions. However, it is intuitively
plausible, and it was argued at a phenomenological level
[2,3], that the emergence of rigidity has to be accompanied
by the appearance of long-range correlations.

Interestingly, the first microscopic argument for the ex-
istence of long-range correlations in crystalline solids was
given in 1966 by Wagner [4], preceding phenomenological
analyses of Refs. [2,3]. However, the part of his paper
dealing with solids seems to have been overlooked. More
importantly, while he showed that in crystalline solids
broken translational symmetry implies long-range correla-
tions, he did not connect the latter to solids’ rigidity.

The intimate relation between long-range correlations
and rigidity was established somewhat indirectly. Bavaud
et al. [5] analyzed the standard expression for the elastic
moduli, which is derived by calculating free energy change
due to a deformation. They proved that this expression
reduces itself to the inverse of the isothermal compressi-
bility if both intermolecular interactions and density cor-
relation functions are short range. Thus, they showed that
for systems with short-range interactions the absence of
long-range density correlations implies the vanishing of the
shear modulus.

The microscopic argument for the existence of long-
range correlations in crystals was independently derived
by Szamel and Ernst [6]. They proposed an expression for a
displacement field in crystals in terms of the microscopic
density and showed that the displacement field defined in
this way exhibits long-range correlations, as expected on
the basis of phenomenological arguments [2,3].

Here we consider an amorphous solid which appears as a
consequence of the so-called dynamic glass transition [7]
predicted by the mean-field replica approach [8–10]. We
show that, in close analogy with crystalline solids, broken

translational symmetry of this amorphous solid implies the
emergence of long-range correlations and rigidity.
It should be recalled that, although macroscopically

the amorphous solid’s density is constant, microscopically
it is randomly nonuniform. Thus, a rigid translation of the
amorphous solid produces an equivalent but different state.
To describe this randomly broken translational symmetry,
and amorphous solids in general, we use the replica
approach of Franz and Parisi [8,9]. In this approach, the
appearance of the amorphous solid manifests itself in
nontrivial replica off-diagonal densities. We argue that the
existence of distinct, rigidly shifted states of the amor-
phous solid manifests itself in a family of equivalent sets
of replica off-diagonal densities. Next, we propose an
expression for the displacement field in terms of micro-
scopic two-point replica off-diagonal densities. We show
that the displacement field defined in this way exhibits
long-range correlations. Since the displacement field is
defined in terms of microscopic two-point replica off-
diagonal densities, long range of the displacement field’s
correlations implies a slow decay of a four-point replica
off-diagonal correlation function.
In addition, we derive and evaluate a new expression

for the shear modulus of amorphous solids. To this end
we evaluate microscopically the force needed to maintain
a shear deformation and compare it to an expression
obtained from the macroscopic theory of elasticity.
Family of equivalent glassy states.—Following Franz

and Parisi [8,9] we consider a system of particles coupled
to a frozen (referred to as ‘‘quenched’’) configuration of the
same system via an attractive potential

�
X
i;j

wðjri � r0j jÞ; (1)

where ri and r0j are positions of particles i and j in the

system and in the quenched configuration, respectively,
and wðrÞ is a monotonic function with a minimum at
r ¼ 0. We assume that as the amplitude � of the potential
is being gradually reduced to 0, if the temperature is
low enough or if the density is high enough, the system
gets stuck in a metastable state characterized by nontrivial
correlations with the quenched configuration. The
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appearance of such a metastable state is termed the dy-
namic glass transition [8–10]. To facilitate averaging over a
distribution of quenched configurations we replicate the
system s times and at the end we take the limit s ! 0 [11].
At the level of the replicated system, the dynamic glass
transition manifests itself in the appearance of nontrivial
two-point replica off-diagonal densities n��ðrÞ, � � �.

With wðrÞ having a minimum at r ¼ 0, these functions
exhibit a pronounced peak at r ¼ 0, oscillate in phase with
the equilibrium pair distribution function gðrÞ, and decay
to n2 at large distances (n is the average density). In the
following the metastable state with all replica off-diagonal
densities having the main peak at r ¼ 0 will be referred to
as the ‘‘classical’’ state.

The above described construction can also be performed
with a potential that pins the system in a position shifted
with respect to the quenched configuration,

�
X
i;j

wðjri � r0j � ajÞ: (2)

The metastable states obtained with potentials (1) and (2)
are identical up to a rigid shift by vector a of the system
relative to the quenched configuration. At the level of the
replicated system this translation corresponds to the fol-
lowing transformation of two replica densities,

n�0ðrÞ ! n�0ðjr� ajÞ; n0�ðrÞ ! n0�ðjrþ ajÞ (3)

for �> 0 and keeping all other two replica densities (both
diagonal and off-diagonal) unchanged. In the following we
consider only densities n�0, �> 0, since densities n0� can
be obtained from the former ones.

This observation implies that instead of one glassy state
we have a continuous family of states that can be labeled
by a vector a denoting translation with respect to the
classical state. This is analogous to what is found in other
systems with broken continuous symmetry [2].

We note that the rigid shift described above breaks
replica symmetry. However, since replica nonsymmetric
states obtained by rigid translations arise due to broken
translational symmetry, they have the same free energy as
the classical state (which is replica symmetric [8,9]). Thus,
the present case is fundamentally different from replica
symmetry breaking in mean-field spin glasses [12]. In the
latter case, replica symmetry breaking originates from the
existence of a multitude of different glassy states unrelated
by translations. Importantly, the replica nonsymmetric
state minimizes the free energy.

Microscopic definition of displacement field.—
According to the conventional definition, a displacement
field in crystalline solids is defined in terms of departures
of particles’ instantaneous positions from their lattice sites.
Notably, this definition implicitly assumes that each parti-
cle can be assigned to a specific lattice site. Thus, it is not
applicable for, e.g., crystals with vacancies or interstitials.

This fact was one of the motivations for a microscopic
definition of the displacement field [6,13].
Since amorphous solids do not have any underlying

crystalline lattice, it is impossible to use the conventional
definition. An operational definition that is closest to the
one used for crystals uses a displacement field defined in
terms of departures of the instantaneous positions with
respect to the average positions. While a procedure like
this can be, at least in principle, implemented in a computer
simulation [14] or an experiment [15], it is not clear how
to formulate it theoretically. The definition we propose is
similar in spirit to this procedure in that it relates micro-
scopic and average densities of the amorphous solid.
We propose the following definition of (the Fourier

transform of) the displacement field in terms of micro-
scopic replica off-diagonal density,

uðkÞ ¼ � 1

N s

Z
dr1e

�ik�r1
Z

dr21
X
�>0

@n�0ðr1; r2Þ
@r1

�X
i;j

�ðr1 � r�i Þ�ðr2 � r0j Þ: (4)

Here n�0ðr1; r2Þ is the classical two-point replica off-
diagonal density and

P
i;j�ðr1 � r�i Þ�ðr2 � r0j Þ is the mi-

croscopic two-point replica off-diagonal density with r�i
and r0j being positions of particles i and j in replica � and

0, respectively. Finally, N is the normalization factor,
N ¼ ð3sÞ�1

R
dr21

P
�>0½@r1n�0ðr1; r2Þ�2. Note that defi-

nition (4) is symmetric with respect to replica indices �,
�> 0. This reflects the fact that the system is first de-
formed and only subsequently replicated. Thus, deforma-
tions in all �> 0 replicas are the same.
Importantly, definition (4) is only applicable to infini-

tesimally small deformations of the classical state. A simi-
lar restriction applies to the definition of the displacement
field in crystals proposed in Refs. [6,13].
Finally, the difference between (4) and the definition

proposed in Refs. [6,13] originates from the fact that in
an amorphous solid (at the level of replicated theory) the
displacement can only be revealed through the change of
the 0� sector of replica off-diagonal densities. In contrast,
in crystalline solids the displacement can be ‘‘read off’’
from the change of the density.
Long-range density correlations.—First, we adapt the

calculation presented in Ref. [6] and prove that correlations
of displacement field (4) exhibit a small wave vector
divergence. Then we show that long-range displacement
field correlations imply slow decay of a component of a
four-point replica off-diagonal correlation function.
We start with Bogoliubov’s inequality [2,16]

hjAj2ihjBj2i � jhABij2 with A¼V�1=2n̂ �u�ðkÞ and

B ¼ V�1=2s�1
P

�>0 n̂ �iL�g�ðkÞ, where n̂ is an arbitrary
unit vector, g� is the Fourier transform of the microscopic
momentum density in replica �, g�ðkÞ ¼ P

imv�i e
�ik�r�i ,

with m denoting the particle’s mass and v�i being the
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velocity of particle i in replica �, and L� is the Liouville
operator [2] in replica �.

The cross term can be evaluated using the self-adjoint
property of L�. In the k ! 0 limit we obtain hABi ¼
�kBT=s. hjBj2i can be expressed in terms of the correlation
function of the stress tensor. The stress tensor in replica �
is defined through the continuity equation for the momen-

tum in replica �, iL�g�ðkÞ ¼ �ik � �$�ðk; tÞ.
Substituting hABi and hjBj2i into Bogoliubov’s inequal-

ity, and taking the s ! 0 limit we obtain

lim
s!0

s

V
hjn̂ � uðkÞj2i � 1

k2
ðkBTÞ2

lim
k!0

1
V h��ðkÞi

; (5)

where

��ðkÞ¼ jk̂ ��$1ðkÞ � n̂j2�jk̂ ��$1ðkÞ � n̂jjk̂ ��$2ðkÞ � n̂j (6)

and k̂ ¼ k=k.
Bound (5) and (6) for the small wave vector behavior of

the displacement field correlations is compatible with the
result of a phenomenological analysis which predicts a k�2

divergence [2]. This agreement, and the closeness of the
steps outlined above and the general scheme presented in
Chap. 7 of Ref. [2] provide an additional justification for
definition (4) and for recognizing the displacement field as
a ‘‘hydrodynamic Goldstone mode.’’

Finally, since the displacement field is defined in terms
of microscopic two-point replica off-diagonal densities,
the left-hand-side (LHS) of Eq. (5) can be rewritten in
terms of four-point replica off-diagonal densities,

LHS ¼ 1

N V

Z
dr1 � � �dr4n̂ � @n10ðr1; r2Þ

@r1
n̂

� @n10ðr3; r4Þ
@r3

½n1010ðr1; r2; r3; r4Þ

� n1020ðr1; r2; r3; r4Þ�e�ik�r13 : (7)

The combination of Eqs. (5) and (7) proves the slow
decay of a component of a four-point replica off-diagonal
correlation function of the amorphous solid. An analogous
calculation for a crystal proves the slow decay of correla-
tions of high Fourier components of the (nontranslationally
invariant) two-particle density [4,6,13].

Shear modulus.—The derivation of a new formula for
the amorphous solid’s shear modulus proceeds in two
steps. First, we consider the change of replica off-diagonal
densities upon an infinitesimally small, long-wavelength
deformation. Next, we calculate microscopically the force
needed to maintain such a deformation. Comparison of
this force with the corresponding macroscopic expression
allows us to identify the shear modulus.

According to Eq. (3), under an infinitesimally small uni-
form translation, replica off-diagonal densities n�0, �> 0,
change in the following way: n�0ðrÞ!n�0ðrÞ�a�@rn�0ðrÞ.

To generalize this formula to an infinitesimally small nonuni-
form translation we imagine a pinning potential which de-
forms the system by imposing an infinitesimal shift that
depends on the position of the particle. This suggests the
following generalization,

n�0ðr12Þ!n�0ðr1;r2Þ¼n�0ðr12Þ�aðr1Þ �@r1n�0ðr12Þ; (8)

where r12 ¼ jr1 � r2j and aðr1Þ is an infinitesimal, long-
wavelength deformation imposed on the system. We
emphasize that (8) is only assumed for a long-wavelength
volume-preserving deformation. Specifically, we assume a
transverse deformation such that @r � aðrÞ ¼ 0.
Equation (8) is inspired by the assumption made by

Triezenberg and Zwanzig [17], and by Lovett et al. [18]
in their analyses of surface tension. A similar assumption
was made by Szamel and Ernst [6] in their derivation of
shear modulus of crystalline solids. Finally, assumption (8)
is consistent with our microscopic definition of the dis-
placement field: if all densities n�0, �> 0, are changed as
indicated in (8) then the Fourier transform of the average
displacement field is equal to huðkÞi ¼ R

dre�ik�raðrÞ.
Next, we calculate the force exerted on one replica of the

system by the pinning potential chosen in such a way that it
imposes the replica off-diagonal densities (8).
First, we identify the pinning potential needed to main-

tain densities (8). Since we are only interested in infini-
tesimally small deformations and thus infinitesimally small
changes of replica off-diagonal densities, we resort to a
(static) linear-response type relation. Thus, we express the
pinning potential using a functional derivative of the inter-
replica potential with respect to the replica off-diagonal
density,

X
�>0

Z
dr3dr4

�
�V�0ðr1; r2Þ
�n�0ðr3; r4Þ

�
n
½�aðr3Þ � @r3n�0ðr34Þ�: (9)

Note that since we have assumed a volume-preserving
deformation, the functional derivative in expression (9)
should be taken at constant density.
Then, we calculate the force per unit volume exerted by

the above pinning potential on the replica �. The Fourier
transform of this force, after integrating by parts and using
the transverse character of the deformation, can be written
in the following way:

F�ðkÞ ¼ � 1

V

Z
dr1 � � � dr4e�ik�r13½@r1n�0ðr12Þ�

�X
�

�
�V�0ðr1; r2Þ
�n�0ðr3; r4Þ

�
n
½@r3n�0ðr34Þ� � aðkÞ: (10)

Finally, we take the long-wavelength limit and expand
the right-hand side of Eq. (10) in a power series in k. The
zeroth order term vanishes because no force is needed in
order to accomplish a rigid shift of the amorphous solid.
The first order term vanishes by symmetry. The second
order term, in the s ! 0 limit and for a shear deformation

PRL 107, 105505 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 SEPTEMBER 2011

105505-3



involving y-dependent translation along the x axis, can be
written in the following form:

FxðkyÞ ¼ �kykyaxðkyÞ; (11)

where � is given by

� ¼ kBT

2V

Z
dr1 � � �dr4y213½@x1n10ðr12Þ�½@x3n10ðr34Þ�

�
��

�½�V10ðr1; r2Þ�
�n10ðr3; r4Þ

�
n
�

�
�½�V10ðr1; r2Þ�
�n20ðr3; r4Þ

�
n

�
: (12)

Macroscopically, for an isotropic solid the force needed
to maintain a long-wavelength shear deformation is given
by a formula identical to Eq. (11), where � is the shear
modulus. This fact allows us to identify � given by
Eq. (12) as the shear modulus of the amorphous solid.

To evaluate � one has to use a concrete (albeit neces-
sarily approximate) implementation of the replica ap-
proach in order to calculate replica off-diagonal densities
and functional derivatives in Eq. (12). To obtain n�0ðrÞ we
use the recently proposed version [19] which is consistent
with mode-coupling theory [20]. To calculate the deriva-
tives we use an additional approximation [21],

�c�0ðr1; r2Þ ¼ ��V�0ðr1; r2Þ½n�0ðr1; r2Þ=n2�: (13)

Here �c�0 is the change of the replica off-diagonal direct
correlation function due to a weak replica off-diagonal
potential V�0. Approximation (13) combined with replica
Ornstein-Zernicke equations allow us to get explicit ex-
pressions for functional derivatives that enter Eq. (12).

In Fig. 1 we show the shear modulus for the hard sphere
glass calculated using as an equilibrium input the Percus-
Yevick structure factor.

Discussion.—We identified Goldstone modes and long-
range correlations appearing in the amorphous solid due to
the spontaneously broken translational symmetry. We
derived a new expression for the shear modulus of the
amorphous solid [24]. This expression is complementary
to the standard one. In particular, our expression can be

used to evaluate the shear modulus of the hard sphere glass
whereas the standard formula is not applicable for hard
sphere systems. In contrast to the result obtained in a recent
replica approach study [22] (which was based on the
standard formula) we found a discontinuous change of
the shear modulus at the dynamic glass transition [23].
We gratefully acknowledge the support of NSF Grant
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Note added.—Recently, we became aware of a related

approach [24] which used the language of density func-
tional theory of a disordered glassy state. This approach
is, however, much more difficult to implement to obtain
explicit results.
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