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Coherent states and their generalizations, displaced Fock states, are of fundamental importance to

quantum optics. Here we present a direct observation of a classical analogue for the emergence of these

states from the eigenstates of the harmonic oscillator. To this end, the light propagation in a Glauber-Fock

waveguide lattice serves as equivalent for the displacement of Fock states in phase space. Theoretical

calculations and analogue classical experiments show that the square-root distribution of the coupling

parameter in such lattices supports a new family of intriguing quantum correlations not encountered in

uniform arrays. Because of the broken shift invariance of the lattice, these correlations strongly depend on

the transverse position. Consequently, quantum random walks with this extra degree of freedom may be

realized in Glauber-Fock lattices.
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Since their introduction by Glauber in 1963, coherent
states have been the subject of extensive research within
the framework of quantum optics [1]. The average posi-
tions and momenta of these minimum-uncertainty wave
packets are known to follow the motion of a classical
oscillator, thereby establishing an important bridge be-
tween quantum and classical mechanics [2]. Coherent
states arise either as eigenkets of the annihilation operator
or from a displacement of the ground state of the quantized
harmonic oscillator in phase space [1]. In general, if dis-
placements of the oscillator eigenstates (termed Fock states
or number states) are considered, a more general class of
states, so-called displaced Fock states (DFS), can be ob-
tained [3,4]. These states are of great relevance to many
areas of quantum optics, the probably most important one
being the direct measurement of Wigner functions [5],
which has been successfully performed on propagating
coherent states [6], on single photons in cavities [7] and
on motional states of trapped atoms [8]. Furthermore, DFS
constitute the eigenstates of Jaynes-Cummings systems
with coherently driven atoms [9], and recently, entangled
DFS have been proposed for quantum dense coding [10].
DFS have been successfully generated by superposing a
Fock state with a coherent state on a beam splitter [11].
However, due to the difficulties in generating pure Fock
states of higher orders, this approach is limited to the
lowest-order DFS. To our knowledge, a direct observation
of the genesis of these states has also not been possible
to date.

Quite recently, an optical system has been proposed
which allows for a direct observation of a classical ana-
logue for the displacement of Fock states [12]: A photonic
lattice of evanescently coupled waveguides [13], with a

square-root distribution of the coupling between adjacent
guides. In these Glauber-Fock photonic lattices, every
excited waveguide represents a Fock state and the spatial
evolution of the light field corresponds to the probability
amplitudes of the DFS in the number basis. Thereby, the
emergence of these fundamental states and the underlying
displacement process can be directly visualized. As no
collapse of the wave function occurs for classical light,
the displacement can be observed for a wide range of
displacement amplitudes simultaneously.
In this Letter, we present the first experimental realiza-

tion of a Glauber-Fock photonic lattice and directly ob-
serve the classical analogue of Fock state displacements up
to the fourth oscillator eigenstate. This arrangement is
implemented by direct femtosecond (fs) laser wave guide
inscription in fused silica [14], whereby the required cou-
pling distribution is achieved by a controlled variation of
the distance between neighboring waveguides.
From another perspective, Glauber-Fock lattices provide

a fertile ground for quantum random walks (QRWs) of
correlated particles, as we show in the second part of this
Letter. If pairs of identical noninteracting photons are
launched into a uniform waveguide lattice, the quantum
interference of all possible paths leads to correlation of the
photons [15], thereby enabling continuous-time correlated
QRWs in a state space much larger than for a single photon
[16]. The correlation of identical particles has also been
analyzed for disordered lattices exhibiting Anderson local-
ization [17] and for Bloch oscillations occurring in lattices
with a linear gradient in their propagation constant [18].
As all these lattices are shift invariant and infinite in
the transverse dimension, the possible trajectories in a
QRW are independent of their starting point. Breaking
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this invariance and introducing a boundary can thus embed
the additional degree of freedom of transverse position into
the QRW.We therefore analyze the correlations for pairs of
separable and path-entangled photons as well as of fermi-
ons in a semi-infinite Glauber-Fock lattice and show how
their correlation patterns uniquely depend on the input
position.

In order to observe the displacement of Fock states in the
optical domain, one requires a lattice of single-mode wave-
guides, whose coupling coefficients between adjacent
elements vary with the square-root of the site labelling
index n [12]:

i
d�n

dz
þCn�n�1 þCnþ1�nþ1 ¼ 0; Cn ¼

ffiffiffi

n
p

C1: (1)

Thereby, �n denotes the modal field amplitude in guide n,
z is the longitudinal coordinate and C1 is the coupling
strength between the first two guides (see Fig. 1). We
represent the oscillator eigenstates by single waveguides;
i.e., the Fock state jki shall correspond to the situation
when only guide k is excited: �n ¼ �nk. If light is
launched into this single site at z ¼ 0, the light propagation

along z will map the displacement of the Fock state jki
along the imaginary axis of the quadrature phase space.
More specifically, the field amplitudes evolve analogous to
the matrix elements of the unitary displacement operator

D̂ð�Þ ¼ expð�ay � ��aÞ [1,12]:

�nðzÞ ¼ hnjD̂ðiC1zÞjki; (2)

with aðyÞ being the ladder operators of the oscillator:

ajni ¼ ffiffiffi

n
p jn� 1i, ayjni ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p jnþ 1i. Hence, after

propagating a distance z, the light intensity distribution

j�nj2 ¼ jhnjD̂ðiC1zÞjkij2 is equivalent to the number dis-

tribution of the DFS D̂ðiC1zÞjki [4].
In the weak coupling regime, Cn depends exponen-

tially on the distance between the guides: Cn ¼
C1 exp½�ðdn � d1Þ=��, with � and d1 being fit parameters,
if C1 is predetermined [14]. Consequently, the coupling
dependence of Eq. (1) is readily achieved by inscribing the
waveguides with dn ¼ d1 � � logð ffiffiffi

n
p Þ as the distribution

of separations. Measuring the dependence of coupling on
waveguide separation at a wavelength of � ¼ 633 nm, we
found the parameters d1 ¼ 23 �m and � ¼ 5:5 �m for a
desired coupling of C1 ¼ 0:37 cm�1. Using these results,
we inscribed a Glauber-Fock lattice with N ¼ 59 wave-
guides and 10 cm length in fused silica, corresponding
to a maximum displacement amplitude � ¼ 3:7i. We
employed fluorescence microscopy to directly observe
the intensity evolution of the injected light [19] and
imaged the output intensity patterns onto a CCD camera.
Figures 2(a)–2(d) present numerical results obtained from
integrating Eq. (1) for several different input sites while the

FIG. 1 (color online). Schematic view of a Glauber-Fock lat-
tice of N waveguides.

FIG. 2 (color online). Light propagation in a Glauber-Fock lattice. (a-d) Calculated intensity evolution and output intensity profiles
for the input sites (a) k ¼ 0, (b) k ¼ 1, (c) k ¼ 2 and (d) k ¼ 4 representing the displacement of the Fock states j0i, j1i, j2i and j4i,
respectively. (e)–(h) Experimental fluorescent images of the intensity evolution and nearfield images of the output facet for a single-
waveguide excitation of these sites with � ¼ 633 nm. All images have been normalized to their respective peak intensity. For
generality, the theoretical images are shown for equidistant waveguides, while in the experiments the sites are distributed according to
dn ¼ d1 � � logð ffiffiffi

n
p Þ.
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experimental data are shown in Figs. 2(e)–2(h), matching
the theoretical expectations very closely. The results
clearly map the genesis of coherent states with their typical
Poisson distribution from the displacement of the ground
state of the oscillator (a),(e) as well as the generation
of higher-order DFS from its higher eigenstates (b)–(d,
(f)–(h). The intensity distribution features kþ 1 maxima
when site k is excited, in agreement to the characteristic
oscillation with kþ 1 maxima in the number distribution

of the DFS D̂ð�Þjki. Interestingly, these oscillations are
analogous to the oscillations of the Franck-Condon factors,
governing the transition probabilities between vibrational
levels during an electronic transition in molecules [4,20].
In that context, the DFS correspond to the vibrational
levels of the excited state, while the levels of the electronic
ground state are undisplaced oscillator eigenstates.
Note, that the right-hand boundary at n ¼ N � 1 is not
reached by the propagating light. Thus, the lattice can be
considered as effectively semi-infinite, corresponding to
the semi-infinite set of Fock states. The largest coupling
reported for laser written waveguide arrays is CN�1 /
5:5 cm�1 [21], which limits the maximum number of
waveguides for the given C1 to N / 200.

As these measurements demonstrate, Glauber-Fock lat-
tices support an optical emulation of DFS for a wide range
of parameters, providing direct insight into their generation
characteristics. The success of such an optical emulation
clearly highlights the wave nature of DFS. As governed by
Eq. (2), the phases of the Fock coefficients are also en-
coded in the modal amplitudes. Hence, a full reconstruc-
tion of the DFS could be achieved by interferometric phase
retrieval at the end of the lattice, e.g., by superposing the
output field with a reference wave and phase stepping [22].

Let us now turn to QRWs of correlated photons in such
Glauber-Fock lattices. As evident from Fig. 2, the intensity

distribution of a classical light field is highly characteristic
for its input waveguide. Hence, the same feature applies to
the output probability distribution of a single photon.
Figures 3(a)–3(c) show the expected distribution for a
single photon excitation of the first three sites. If two
indistinguishable photons propagate in the lattice, all pos-
sible paths will interfere, and one can therefore expect
correlation patterns which are unique for each combination
of input positions, in contrast to the correlations arising in
uniform lattices where all waveguides are embedded in
identical coupling environments [15,16].
At first, we consider input states of separable photons,

where two photons are launched into the waveguides k and

l: j�0i ¼ ayk a
y
l j;i. Here, aðyÞk denotes the boson annihila-

tion (creation) operator for a photon in guide k and j;i is
the vacuum state. The probability of coincident detection
of photons in guides q and r is determined by the photon
number correlation [15]:

�qr ¼ hayqayr araqi ¼ jUqkUrl þUqlUrkj2; (3)

with Umn ¼ ðeizCÞmn and the coupling matrix being Cmn ¼
C1ð

ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

�mnþ1 þ
ffiffiffi

n
p

�mn�1Þ for the Glauber-Fock lat-
tice. We calculated � for a 10 cm long lattice with C1 ¼
0:36 cm�1 and a set of input configurations involving the
first three sites [Figs. 3(d)–3(f)]. The correlation patterns,
and thereby the trajectories of a correlated QRW, show
typical bosonic bunching behavior: on-diagonal peaks,
corresponding to a high probability of detecting both pho-
tons in the same output region. Unlike in uniform arrays
[15], the correlations are unique for each input state and
depend critically on its transverse position, not only on the
interleaving distance among the excitation sites. This is
due to the extra phase the photons acquire during reflection
at the boundary as well as due to the specific Glauber-Fock

FIG. 3 (color online). Photon correlations in a Glauber-Fock lattice. (a)–(c) Calculated output intensities for the input sites (a) k ¼ 0,
(b) k ¼ 1 and (c) k ¼ 2. (d)–(f) Calculated photon correlation for the input j�0i ¼ ayk a

y
l j;i with (d) ðk; lÞ ¼ ð0; 1Þ, (e) ðk; lÞ ¼ ð1; 2Þ

and (f) ðk; lÞ ¼ ð0; 2Þ. (g)–(i) Measured classical output intensities at � ¼ 800 nm. (k)–(m) Measured classical estimates. All images
have been normalized to their respective peak values.
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coupling distribution. The correlation function in any pho-
tonic lattice can be estimated with classical light by inten-
sity correlation measurements [23]. We performed such
measurements with coherent light beams in a second lattice
of 59 waveguides, designed for � ¼ 800 nm. In this spec-
tral range the fabrication parameters were found to be
� ¼ 10:7 �m and d1 ¼ 34 �m for C1 ¼ 0:36 cm�1.
Figures 3(g)–3(i) show the measured output intensities
from single-waveguide excitation, clearly exhibiting the
typical number distribution of DFS. Evidently, they closely
match the theoretical data presented in Figs. 3(a)–3(c),
apart from a slightly increased width of the light distribu-
tion, which can be attributed to the growth of the coupling
being slightly stronger than the desired

ffiffiffi

n
p

dependence.

The classical estimates �ðcÞ are obtained by launching two
coherent laser beams of equal amplitude and adjustable
relative phase into the sites k and l, measuring the intensity
correlation among the waveguides at the output, averaging
over 60 random relative phases and deducting intensity
products from single-waveguide excitation. For a detailed
description of the method, we refer to [23] [see Eqs. (7) and
(8) therein]. The results obtained by this scheme are pre-
sented in Figs. 3(k)–3(m). Despite a significant level of
noise, most likely due to fluctuations of phase and ampli-
tude of the classical light fields, the essential features of
� are well recovered by the classical estimate, namely,
the positions of its maxima and the ‘‘valleys’’ of destruc-
tive quantum interference. The shift towards larger wave-
guide indices is due to the increased spread of the light
distribution as observed for single-waveguide excitation
[Figs. 3(g)–3(i)].

Finally, we theoretically study input states of path-

entangled photon pairs, where both photons are sent into

either of the guides k and l (k � l): j��
0 i ¼ 1

2 �
ðay2k � ay2l Þj;i. These biphoton states are the lowest-order
N00N states, a class of maximally entangled N-photon

states [24]. Upon propagation of such a state in a photonic

lattice the photon correlation yields [25]: ��
qr ¼ jUqkUrk �

UqlUrlj2. The correlations have been calculated for the

lowest-order Fock states for the symmetric (þ ) as well

as for the antisymmetric state (� ) [Figs. 4(a)–4(f)].

As before, the correlation maps are highly distinct for

each particular input configuration and become more in-

volved when higher excitation sites are used. To gain a

more thorough insight into the nature of these correlations,

it is worthwhile to compare them to the correlation of

product states of identical bosons [Eq. (3)] and fermions

in Glauber-Fock lattices. As recently demonstrated, fermi-

onic correlations can be accurately simulated in birefrin-

gent waveguide lattices, provided that the two polarization

states are entangled across different sites [26]. Introducing

the annihilation (creation) operators bðyÞn for fermions in a

lattice [27] and considering initial states of the type

j�ðfÞ
0 i ¼ byk b

y
l j;i (k � l), the fermionic correlation

function yields [17]: �ðfÞ
qr ¼hbyqbyr brbqi¼ jUqkUrl�

UqlUrkj2. The results displayed in Figs. 4(g)–4(i) show a

strong anticorrelation: Off-diagonal peaks dominate the
correlation map and there is zero probability to find both
particles in the same channel, as required by Pauli’s exclu-
sion principle. Quite remarkably, the correlation patterns
for the entangled photons [Figs. 4(a)–4(f)] reveal a com-
position of bosonic bunching [compare Figs. 3(d)–3(f)]
and fermionic antibunching features, similar to the situ-
ation in disordered lattices [17]. In some cases the main
peaks follow a bosonic behavior(c, d, e), while in others the
fermionic anticorrelation prevails (a),(b),(f). However, as
the entangled photons are still bosons, they never exhibit
the strong on-diagonal zero trench characteristic for fermi-
ons. Note that a classical estimate for the correlation of
path-entangled photon pairs can be obtained from intensity
correlations of two coherent light beams as well, but
requires a precisely controlled relative phase [25].
In conclusion, we directly observed a classical analogue

for the displacement of Fock states by monitoring the
propagation of classical light waves in Glauber-Fock pho-
tonic lattices. This demonstrates that essentially wave me-
chanics governs the displacement process. As every
waveguide is subjected to a different coupling environ-
ment, correlations of identical particles evolving in such
a lattice are highly characteristic for each input configura-
tion. Therefore, quantum random walks exploiting the
additional layer of complexity associated with this degree
of freedom seem in reach.
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FIG. 4 (color online). Expected correlation patterns of path-
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0 i. (g)–(i) Correlation

function of two fermions being launched into sites k and l.
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