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We propose a holographic dual of a conformal field theory defined on a manifold with boundaries, i.e.,

boundary conformal field theory (BCFT). Our new holography, which may be called anti–de Sitter BCFT,

successfully calculates the boundary entropy or g function in two-dimensional BCFTs and it agrees with

the finite part of the holographic entanglement entropy. Moreover, we can naturally derive a holographic g

theorem. We also analyze the holographic dual of an interval at finite temperature and show that there is a

first order phase transition.

DOI: 10.1103/PhysRevLett.107.101602 PACS numbers: 11.25.Tq

The anti–de Sitter (AdS) conformal field theory (CFT)
correspondence is a very fascinating idea which enables us
to study quantum gravity in a nonperturbative way and at
the same time to analyze strongly coupled CFTs efficiently
[1,2]. The purpose of this Letter is to consider the holo-
graphic dual of CFT defined on a manifold M with a
boundary @M, which is the so called boundary conformal
field theory (BCFT). We argue that this is given by general-
izing the AdS CFT correspondence in the following way.
Based on the idea of holography [3], we extend a
d-dimensional manifoldM to a dþ 1 dimensional asymp-
totically AdS space N so that @N ¼ M [Q, where Q is a
d-dimensional manifold which satisfies @Q ¼ @M. See
Fig. 1 for some examples of our construction.

Usually, we impose the Dirichlet boundary condition on
the metric at the AdS boundary. Thus we assume the
Dirichlet boundary condition on M. However, we propose
to require a Neumann boundary condition on the metric at
Q as explained later. This can be regarded as a modification
of the well-known Randall-Sundrum setup [4] (see also,
e.g., [5] in the context of AdS CFT) such that the brane now
intersects with the AdS boundary. Refer also to [6], where
microscopic descriptions in string theory for a variety of
boundary conditions have been discussed. An earlier paper
[7] also presents another way to introduce a boundary in
AdS CFT.

To make the variational problem sensible, we usually
add the Gibbons-Hawking boundary term [8] to the
Einstein-Hilbert action (we omit the boundary term forM):

I ¼ 1

16�GN

Z
N

ffiffiffiffiffiffiffi�g
p ðR� 2�Þ þ 1

8�GN

Z
Q

ffiffiffiffiffiffiffi�h
p

K: (1)

The metric of N and Q is denoted by g and h, respectively.
K ¼ habKab is the trace of extrinsic curvature Kab defined
by Kab ¼ ranb, where n is the unit vector normal to Q
with a projection of indices onto Q from N.

Consider the variation of the metric in the above action.
After a partial integration, we find

�I ¼ 1

16�GN

Z
Q

ffiffiffiffiffiffiffi�h
p ðKab�h

ab � Khab�h
abÞ: (2)

Notice that the terms which involve the derivative of �hab
cancel out thanks to the boundary term. We can add to (1)
the action IQ of some matter fields localized on Q. This

prescription phenomenologically provides holographic du-
als of various boundary conditions in the CFT. We impose
the Neumann boundary condition instead of the Dirichlet
one by setting the coefficients of �hab to zero and finally
we obtain the boundary condition

Kab � habK ¼ 8�GNT
Q
ab; (3)

where we defined TQab ¼ ð2= ffiffiffiffiffiffiffi�h
p Þ�IQ=�hab.

As a simple example we would like to assume that the
boundary matter Lagrangian is just a constant. This leads
us to consider the following action:

I¼ 1

16�GN

Z
N

ffiffiffiffiffiffiffi�g
p ðR� 2�Þþ 1

8�GN

Z
Q

ffiffiffiffiffiffiffi�h
p ðK�TÞ:

(4)

The constant T is interpreted as the tension of the boundary
surface Q. In AdS CFT, a dþ 1 dimensional AdS space
(AdSdþ1) is dual to a d-dimensional CFT. The geometrical
SOð2; dÞ symmetry of AdS is equivalent to the conformal
symmetry of the CFT. When we put a d� 1 dimensional
boundary to a d-dimensional CFT such that the presence
of the boundary breaks SOð2; dÞ into SOð2; d� 1Þ, this is

FIG. 1 (color online). Examples of the holographic duals of
BCFTwith a single AdS boundary (a) and twoAdS boundaries (b).
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called a BCFT [9]. Note that though the holographic duals
of defect or interface CFTs [10,11] look very similar with
respect to the symmetries, their gravity duals are different
from ours because they do not have extra boundaries likeQ.

To realize this structure of symmetries, we take the
following ansatz of the metric (see also [10,12]):

ds2 ¼ d�2 þ cosh2
�

R
ds2AdSd : (5)

If we assume that � takes all values from �1 to 1, then
(5) is equivalent to the AdSdþ1. To see this, let us assume
the Poincaré metric of AdSd by setting

ds2AdSd ¼ R2 �dt2 þ dy2 þ d ~w2

y2
; (6)

where ~w 2 Rd�2. Remember that the cosmological con-

stant � is related to the AdS radius R by � ¼ � dðd�1Þ
2R2 .

By defining new coordinates z and x as z ¼ y= cosh�R ,

x ¼ y tanh�R , we recover the familiar form of the Poincaré

metric of AdSdþ1: ds
2 ¼ R2ðdz2 � dt2 þ dx2 þ d ~w2Þ=z2.

To realize a gravity dual of BCFT, we will put the
boundary Q at � ¼ �� and this means that we restrict the
spacetime to the region �1< �< �� [as described in
Fig. 2(a)]. The extrinsic curvature on Q reads Kab ¼
ð1=RÞ tanhð�=RÞhab. The boundary condition (3) leads to

Kab ¼ ðK � TÞhab: (7)

Thus �� is determined by the tension T as follows:

T ¼ d� 1

R
tanh

��
R

: (8)

Let us concentrate on the d ¼ 2 case to describe the two-
dimensional BCFT. This setup is special in that it has been
well studied (see [13] and references therein) and that the
BCFT has an interesting quantity called the boundary
entropy (or g function) [14]. The boundary state of a
BCFT with a boundary condition � is denoted by jB�i
below. We define the quantity called g by the disk ampli-
tude g� ¼ h0jB�i, where j0i is the vacuum state. The

boundary entropy Sð�Þbdy is defined by

Sð�Þbdy ¼ logg�: (9)

The boundary entropy measures the boundary degrees of
freedom and can be regarded as a boundary analogue of the
central charge c.

Consider a holographic dual of a CFT on a round disk
defined by �2 þ x2 � r2D in the Euclidean AdS3 spacetime

ds2 ¼ R2 dz
2 þ d�2 þ dx2

z2
; (10)

where � is the Euclidean time. In the Euclidean formula-
tion, the action (4) is now replaced by

IE ¼� 1

16�GN

Z
N

ffiffiffi
g

p ðR� 2�Þ� 1

8�GN

Z
Q

ffiffiffi
h

p ðK�TÞ:

(11)

Note that �� is related to the tension T of the boundary via
(8). When the BCFT is defined on the half-space x < 0, its
gravity dual has been found in the previous section.
Therefore we can find the gravity dual of the BCFT on
the round disk by applying the conformal map (see, e.g.,
[15]). The final answer is the following domain in AdS3:

�2 þ x2 þ ½z� sinhð��=RÞrD�2 � r2Dcosh
2ð��=RÞ � 0:

(12)

In this way we found that the holographic dual of BCFTon
a round disk is given by a part of the two-dimensional
round sphere [see Fig. 2(b)]. A larger value of tension
corresponds to the larger radius.
Now we would like to calculate the disk partition func-

tion in order to obtain the boundary entropy. By evaluating
(11) in the domain (12), we obtain

IE ¼ R

4GN

�
r2D
2�2

þ rD sinhð��=RÞ
�

þ logð�=rDÞ� 1

2
���

R

�
;

(13)

where we introduced the UV cutoff z > � as usual. By
adding the counterterm on the AdS boundary [16], we can
subtract the divergent terms in (13). The difference of the
partition function between � ¼ 0 and � ¼ �� is given by
IEð��Þ � IEð0Þ ¼ � ��

4GN
. Since the partition function is

given by Z ¼ e�SE , we obtain the boundary entropy

Sbdy ¼ ��
4GN

; (14)

where we assumed Sbdy ¼ 0 for T ¼ 0 because the bound-

ary contributions vanish in this case.
Another way to extract the boundary entropy is to cal-

culate the entanglement entropy. The entanglement en-
tropy SA with respect to the subsystem A is defined by
the von Neumann entropy SA ¼ �Tr�A log�A for the re-
duced density matrix �A. In a two-dimensional CFT on a
half line, SA behaves as follows [17]:

SA ¼ c

6
log

l

�
þ logg; (15)

where c is the central charge and � is the UV cutoff (or
lattice spacing); A is chosen to be an interval with length lFIG. 2. The holographic dual of a half line (a) and a disk (b).
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such that it ends at the boundary. The logg in (15) coincides
with the boundary entropy (9).

In AdS CFT, the holographic entanglement entropy is
given in terms of the area of the codimension two minimal
surface (called �A) which ends at @A [18] SA ¼ Area
ð�AÞ=4GN . Using this formula, the boundary entropy in
interface CFTs has successfully been calculated in [12,19].

Consider the gravity dual of a two-dimensional BCFTon
a half line x < 0 in the coordinate (10). By taking the time
slice � ¼ 0, we define the subsystem A by the interval
�l � x � 0. In this case, the minimal surface (or geodesic
line) �A is given by x2 þ z2 ¼ L2. If we go back to the
coordinate system (5) and (6), then �A is simply given
by � ¼ 0, y ¼ l and �1< � � ��. This leads to SA ¼
ð1=4GNÞ

R���1 d�. By subtracting the bulk contribution
which is divergent as in (15), we reproduce the previous
result (14).

In two-dimensional CFT, there is a well-known fact, the
so called c theorem [20], that the central charge monotoni-
cally decreases under the renormalization-group (RG)
flow. In the case of BCFT, an analogous quantity is actually
known to be the g function or, equally, boundary entropy
[14]. At fixed points of boundary RG flows, it is reduced to
that of BCFT introduced in (9). It has been conjectured that
the g function monotonically decreases under the boundary
RG flow in [14] and this has been proven in [21] later.
Therefore the holographic proof of g theorem described
below will offer us important evidence of our proposed
holography. Refer to [22] for a holographic c theorem and
to [23] for a holographic g theorem in the defect CFTunder
a probe approximation.

Because we want to keep the bulk conformal invariance
and we know that all solutions to the vacuum Einstein
equation with �< 0 are locally AdS3, we expect that the
bulk spacetime remains to be AdS3 as long as matter fields
are not excited. We describe the boundary Q by the curve
x ¼ xðzÞ in the metric (10). We assume generic matter

fields on Q and this leads to the energy stress tensor TQ
ab

term in the boundary condition (3). It is easy to check the

energy conservation raTQ
ab ¼ 0 in our setup because

raðKab � KhabÞ ¼ Rnb, where n is the Gaussian normal
coordinate which is normal toQ. In order to require that the
matter fields on the boundary are physically sensible, we
impose the null energy condition (or weaker energy con-
dition) as in the holographic c theorem [22]. It is given by

the inequality TQ
abN

aNb � 0 for any null vectorNa tangent

to the surface Q. This condition is equivalent to x00ðzÞ � 0
because

ðKab � KhabÞNaNb ¼ � Rx00ðzÞ
z½1þ x0ðzÞ2�3=2 � 0; (16)

for the two null vectors ðNt; Nz; NxÞ ¼ ½�1; ð1þ x02Þ�1=2;

x0ð1þ x02Þ�1=2�. Since at a fixed point the boundary en-
tropy is given by Sbdy ¼ ��

4GN
and we have the relation

x
z ¼ sinhð��=RÞ on the boundary Q, we would like to

propose the following g function loggðzÞ ¼ R
4GN

arcsinh

ðxðzÞz Þ. By taking the derivative, we get @ loggðzÞ=@z ¼
x0ðzÞz�xðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2þxðzÞ2
p . Indeed we can see that x0z� x is nonpositive

because this is vanishing at z ¼ 0 and (16) leads to
ðx0z� xÞ0 ¼ x00z � 0. In this way, we manage to derive
the g theorem.
Since so far we have studied a holographic BCFT in the

presence of a single boundary, next we would like to
analyze a holographic dual of a two-dimensional CFT on
an interval. At finite temperature, there are two candidates
for the bulk geometry: one of them is the thermalAdS3 and
the other is the Banados, Teitelboim, and Zanelli (BTZ)
black hole (AdS3 black hole). In the absence of boundaries
Q, there is the well-known Hawking-Page phase transition
between them [24,25].
At low temperature, the bulk geometry is expected to be

given by the thermal AdS3 defined by the metric

ds2 ¼ R2 d�
2

z2
þ R2 dz2

hðzÞz2 þ
R2hðzÞ
z2

dx2; (17)

where hðzÞ ¼ 1� ðz=z0Þ2. The periodicity of the
Euclidean time �, denoted by the inverse temperature
1=TBCFTð� 2�zHÞ, can be chosen arbitrarily, while that
of the space direction x is determined to be 2�z0 by
requiring smoothness.
We again describe the boundary Q by the curve

x ¼ xðzÞ. The boundary condition (7) is solved as follows:

xðzÞ � xð0Þ ¼ z0 arctan

�
RTz

z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðzÞ � R2T2

p �
: (18)

Notice that x0ðzÞ gets divergent at z� ¼ z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2T2

p
and thus this should be the turning point [see Fig. 3(a)].
Thus the boundary Q totally extends from x ¼ 0 to
x ¼ �z0. In the end, we can evaluate the action

IE ¼ � �RzH
8GNz0

¼ � �

24

c

�xTBCFT

; (19)

where we employed the well-known relation between the
AdS3 radius R and the central charge c of CFT2, given by
c ¼ 3R

2GN
[26]. Note that the final result (19) does not depend

on the tension T and is correct even when T < 0.

FIG. 3. The holographic dual of an interval at low temperature
(a) and high temperature (b).
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On the other hand in the higher temperature phase, the
bulk is described by a part of the BTZ black hole:

ds2 ¼ R2 fðzÞ
z2

d�2 þ R2 dz2

fðzÞz2 þ R2 dx
2

z2
; (20)

where fðzÞ ¼ 1� ðz=zHÞ2. The Euclidean time � is com-
pactified on a circle such that �� �þ 2�zH and thus the
temperature in the dual BCFT is TBCFT ¼ 1

2�zH
. The length

of the interval is again denoted by �x ¼ �z0.
We find the following profile x ¼ xðzÞ of Q from (7)

xðzÞ � xð0Þ ¼ zHarcsinh

�
RTz

zH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2T2

p
�
: (21)

Note Q consists of two disconnected parts as in Fig. 3(b).
Now we evaluate the Euclidean action (11) in the form

IE ¼ 2Ibdy þ Ibulk. 2Ibdy is the boundary contributions,

while Ibulk is the bulk ones which do not depend on T.
After subtracting the divergences, we obtain

Ibulk ¼ ��c

6
�xTBCFT: (22)

This result (22) clearly agrees with what we expect from
the standard CFT results. On the other hand, each of two
boundary contributions is found to be

Ibdy ¼ � ��
4GN

¼ � c

6
arctanhðRTÞ: (23)

This offers us one more independent calculation of bound-
ary entropy via the identity g ¼ eSbdy ¼ e�Ibdy .

Let us examine when either of the two phases is favored.
To see this we compare ð22Þ þ 2	 ð23Þwith (19) and pick
the smaller one. In this way we find that the black hole
phase is realized when

�xTBCFT >� 1

�
arctanhðRTÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 1

�2
arctanh2ðRTÞ

s
:

At lower temperature, the thermal AdS phase is favored. At
vanishing tension T ¼ 0, the phase boundary z0 ¼ zH
coincides with that of the Hawking-Page transition [25].
As the tension gets larger, the critical temperature gets
lower. This phase transition is first order and is analogous
to the confinement or deconfinement transition in gauge
theories [25].

Finally, it is also interesting to consider the case where
the boundary M consists of two disconnected manifolds
MA and MB as in Fig. 1(b). The holographic entanglement
entropy SA between MA and MB is estimated as the mini-
mal area of the cross section of the throat [27], which is
finite and nonvanishing. Many things are left for future
work such as the study of correlation functions, higher
dimensional and supersymmetric examples, string or M

theory realizations, and applications to condensed matter
physics.
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