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The dynamics of an ensemble of identically prepared two-qubit systems is investigated which is
subjected to the iteratively applied measurements and conditional selection of a typical entanglement
purification protocol. The resulting dynamics exhibits strong sensitivity to initial conditions. For one class
of initial states two types of islands characterize the asymptotic limit. They correspond to a separable and
a fully entangled two-qubit state, respectively, and their boundaries form fractal-like structures. In the
presence of incoherent noise an additional stable asymptotic cycle appears.
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Introduction.—Entanglement is at the heart of quan-
tum physics since its discovery [1]. However, it was only
recently that the focus has been put on entanglement as
a resource for quantum communication and quantum
information processing [2]. Various protocols have
been developed to detect [3], generate, and distill entan-
glement [4]. From an ensemble of identical quantum
states, one can produce an ensemble yielding a higher
degree of entanglement by unitary transformations, mea-
surements, and selection conditioned on measurement
outcomes. These nonlinear processes are referred to as
entanglement distillation or purification. Entanglement
distillation protocols play a crucial role in increasing
the quality of communication channels and have also
been used to define the degree of entanglement in an
operational sense.

The phenomenon that sensitivity to initial conditions
leads to chaotic dynamics in classical physics is well-
known. Similar phenomena in closed quantum systems
are, however, excluded by the quantum unitary evolution
[5]. In the case of open quantum systems the restriction
to unitarity is lifted. The evolution of an open quantum
system is sometimes pictured as additionally having an
environment that performs generalized measurements on
it. In general, any type of measurement makes the evolu-
tion nonunitary. Entanglement purification, i.e., selection
of certain systems from an ensemble of identical systems
based on the results of partial measurements, can be re-
garded as a generalized feedback mechanism. The non-
linear dynamics resulting from such generalized feedback
has been shown to lead in certain cases to a chaos [6]. This
type of chaos is essentially different from that arising
from the stochastic dynamics of a continuously measured
open quantum system [7], which can become chaotic in
the semiclassical regime while still showing signatures of
quantum behavior [8].
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The generalized feedback resulting from measurement-
based selection plays a crucial role in the case of various
entanglement purification protocols [4]. Applying the
purification protocol [9] on an ensemble of single qubits
prepared in identical pure states, after each iteration step
the remaining, selected ensemble of qubits will again be in
identical, pure quantum states. The dynamical evolution
can be characterized by a rational nonlinear map over the
extended complex plane representing the pure states. This
map has been proven to lead to truly chaotic behavior [6].
A single qubit is the simplest quantum system, and also
lacks all genuine nonlocal quantum properties. Thus the
above mentioned study left a fundamental question open,
which in turn rises naturally in the context of entanglement
purification: Can we find sensitivity to initial conditions
for genuine mulipartite quantum properties, in particular,
for entanglement, if only local operations and classical
communication are applied?

In this Letter we focus on a particular entanglement
purification protocol [9], and demonstrate the existence
of true chaos which manifests also in the evolution of
entanglement. An important feature of the protocol is
that it maps pure states onto pure states; moreover, it
may also increase purity of initially mixed states. Our
analysis is accomplished by showing that the convergence
to a fully entangled or a separable asymptotic attractor can
be sensitive to the initial state.

Measurement-based nonlinear dynamics.—The pure
quantum state of a system consisting of a pair of qubits
can be expressed in the computational basis as |W) =
¢;100) + ¢,]01) + ¢5|10) + c4|11). We consider an en-
semble of qubit pairs prepared in the state |¥) as the input
to the entanglement purification protocol [9] schematically
depicted in Fig. 1. This protocol realizes a nonlinear
transformation of the quantum state |W¥) according to
c;—Nc?, where N is a necessary normalization factor.
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FIG. 1. Schematic representation of one iteration step of the
entanglement purification process. The diamond shaped ele-
ments denote acceptance of the pair of qubits only when both
measurements yield 0. The depicted procedure is used to prepare
from an ensemble £ made up of pairs of qubits all in a state | ),
an ensemble £ made up of pairs of qubits in the state [').
During the procedure, half of the pairs in £ are completely used
up, while a portion of the other half is retained depending on the
measurement outcome. Here we depicted the special case
U = H ® H, where H is the Hadamard gate.

The nonlinearity is due to the generalized feedback real-
ized by the measurement-based conditional selection. By
following each nonlinear transformation by a unitary U,
further nontrivial dynamics can be generated. A complete
iteration can be expressed as the transformation |W') =
US|¥). Note, that only local unitary transformations com-
ply with the concept of entanglement purification. For the
following analysis we fix the unitary transformation to be
U=H®H, where H is a one-qubit Hadamard gate
[Hy = (=1)7/V2].

For Hilbert spaces of dimensionalities of more than two,
such as for that of a two-qubit system, the representation of
a pure state requires a vector of several complex numbers,
and the nonlinear dynamics is described by a nonlinear
map on this higher dimensional complex space. The
mathematics of nonlinear dynamical maps in several com-
plex variables is substantially more involved and much less
understood than the same for a single complex variable.
Even the existence of chaotic regions is a nontrivial
question [10].

We are interested in the evolution of genuine multipa-
rtite properties of the system under the iterative nonlinear
dynamics. Since this protocol describes an entanglement
purification protocol, of all such properties, entanglement
is of the most concern. Thus we consider states parame-
trized by the complex number  ({ € ¢ including infinity)
of the form

W () = N(£)(100) + £[11)), (1)

where the normalization factor reads IN({)=
(1 + |£*)~'/2. The degree of entanglement of this state
is completely determined by ¢ via the binary entropy
function H(N'(£)?) [11]. By studying the evolution of
these states we can learn about the general multipartite
properties of this protocol. The analytic treatment of this
evolution is greatly simplified by the fact that the states of

the form of Eq. (1) are invariant under two successive
iterations, in particular, yielding

[W(OP) = N(g())I00) + g(H)I11)), 2)

where g(£) = (2£%)/(1 + £*). Thus the description of the
dynamics for this class of initial states simplifies to a
nonlinear map of a single complex variable. The function
g(¢) : € — Cis a fourth order rational function generating
a one variable complex dynamical map on the Riemann
sphere. The map is chaotic in the sense that the correspond-
ing Julia set is nonvacuous [12]. Fourth order maps in
general can lead to rather involved behavior. We base our
analysis on the observation that the fourth order rational
map can be written as a composition of a second order
rational function with itself g(&) = f(f()) = f°%(?),
where

e

f(g):1+—§2 (3)

Moreover, the same function also describes the quantum
state after an odd number of iterations, according to
[P D) = NTI00) + [11) + fo21()([01) + [10))].
Thus the iterative dynamics of initial states of the form of
Eq. (1) is equivalent to the iterative dynamics generated by
the second order rational map defined in Eq. (3). In the
following we examine this mapping in some detail.

Stable cycles of the dynamics.—The long-term behavior
of a rational map can be analyzed [12] by following the
orbits of its critical points [points where the derivative of
the map vanishes f’({.) = 0]. The second order map in
Eq. (3) has two critical points: {,; = 0 and ., = . The
first one, (., is part of the superattracting cycle {0, 1},
while the second one lands on the same cycle after two
iterations. Therefore, the map has one stable (superattrac-
tive) cycle. Translated back to the language of states, we
have to take into account that the function f describes a
state in the same form only in every second step. Thus,
depending on the parity of steps when reaching the first
element of the cycle, we have two distinct cases.

In the first case, when £°2*({) = 1, the corresponding
state reads

[y = \}E(lom 111 = [B). 4

After an even number of steps, one reaches a fully en-
tangled state, the Bell state |® ™). Since this state is invari-
ant under both the nonlinear transformation S and the
unitary operation H ® H, we have |W®) = |yt =
|®*). Therefore, the Bell state |® ") is an asymptotically
stable fixed point of the dynamics.

In the second case, when f°2"({) = 0, the correspond-
ing state reads

[wC) = 100). (&)
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The above product state is not invariant under the iterative
dynamics; however, any subsequent step will leave the
state completely separable. In particular, after an odd
number of steps we find

|Pen) = 3(10) + 1)) ® (10) + [1)). (6)

Therefore, the second stable cycle is of length two; both of
its members are separable pure states. Because of a theo-
rem on rational maps [12], the degree of the rational
function determines the maximum number of stable cycles.
For a rational map of degree two, at most two stable cycles
can exist. In our case, the single stable cycle of the rational
map f can lead to two different stable cycles of the
dynamics, depending on the parity of the number of steps
when approaching the first element of the cycle. Thus, we
have found all possible stable cycles of the dynamics
restricted to initial pure states of the form (1).

Sensitivity to initial states.—The two stable cycles of the
dynamics are very different. One of them is a single,
completely entangled pure state, a Bell state, while the
other one is an oscillation between two separable pure
states of the two qubits. We ask now the question, what
are the initial states converging to each of the stable cycles?

Let us first discuss the case of real values for the parame-
ter . The function f maps real numbers to real numbers;
thus, it can be restricted to R. The members of the stable
cycle {0, 1} are also real numbers. We can now determine
the basin of attraction for the two cases of convergence,
i.e., convergence to O after an even or an odd number of
steps, which we shall call even-zero or odd-zero conver-
gence, respectively. The immediate neighborhood of the
fixed point 0, belonging to even-zero convergence, is de-
termined by the equation |£°?(£)| < |£], with the condition
|£] < 1. The corresponding equation can be explicitly
solved yielding |/|<Z, where {4 =(a—1—2/a)/3 with
a= (17 +3+/33)!/3. The preimages of the interval (— ¢y,
{4) belong to an odd-zero convergence region. By solving
the corresponding equation we find two distinct inte-

rvals of odd-zero convergence {4 < |{| < {3 where ¢z =

V(=2 +2a + a?)/(2 + 4a — a?). It is easy to see that the
region || > {5 is mapped after one iteration to the region
4 < |Z| < Zg; thus, it belongs to even-zero convergence.
To summarize the behavior of the map restricted to the reals,
we have found that regions of odd-zero and even-zero
convergence follow each other; these open sets belong to
the Fatou set. The border point ¢y is a repulsive fixed point
of the map, while the other border points {— 4, — g, {5} are
preimages of ,. These four points belong to the Julia set.

A similar analysis can be repeated for the map f with

domain €. The preimages of 0 with their open small
neighborhoods provide regions of odd-zero or even-zero
convergence, forming the Fatou set. The Fatou set is an
open set, while the complementary closed set is the Julia
set. A small neighborhood of the origin will belong to
even-zero convergence; a sufficient condition for this is

that | (£(£))] < |£|. From this condition we can determine
the maximum radius - of a circle around the origin
belonging to even-zero convergence. The radius {- can
be calculated explicitly from an algebraic equation; its
numerical value is {- = 0.475. The first order preimages
of O are 1 and —1. Thus, 1 and —1 together with a region
around them belong to odd-zero convergence. The pre-
image of the circle of convergence around zero determines
an immediate region of convergence around 1 and —1.Ina
similar manner one can continue this process and deter-
mine the next order preimages and regions of convergence
around them. The numerically calculated convergence re-
gions are shown in Fig. 2. We can clearly recognize a
chessboardlike structure of light (green) and dark (blue)
colored islands, belonging to convergence to fully en-
tangled or completely separable states, respectively. The
islands follow a self-similar structure with decreasing size.
A Julia set is formed by the border points between the two
colors, with no stable cycles in it. The asymptotic entan-
glement of the two-qubit system behaves chaotically; it is
sensitive to the initial state on arbitrary small scales. Since
this is an asymptotic map, it involves an infinite-in-time
limit process.

Mixed initial states—Up to now, we have considered
pure initial states. Adding noise to the initial state, de-
scribed by a density operator, will alter the dynamics. We
will test the sensitivity to a certain type of noise by adding
the unit matrix to the density matrix representing the initial
pure state

P& ) = WXVl + 21 ()

where A € [0, 1], and 1 stands for the unit operator acting
on the Hilbert space of the two qubits. Since the dynamics
2
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FIG. 2 (color online). Convergence of initial states of Eq. (1)
to the two limiting cycles as a function of the complex parameter
{. The dark (blue) color denotes convergence to the maximally
entangled state of Eq. (4), and the light (green) color the
convergence to the cycle of the two separable states in
Egs. (5) and (6).
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FIG. 3 (color online). Convergence of mixed initial states
p(A, ) of Eq. (7) to the three limiting cycles as a function of
the complex parameter ¢, at A = 0.75. The darkest (blue) and
second-darkest (green) colors denote convergence to the same
cycles as in Fig. 2, while the lightest (yellow) color denotes
convergence to the separable mixed cycle in Eq. (8). As A is
decreased from 1 to 0, the corresponding convergence plots
gradually turn from those in Fig. 2 to uniform lightest (yellow)
color.

is no longer restricted to pure states, we can expect that
further stable fixed cycles will appear, containing mixed
states. The stability of the fixed cycles can be proven in any
convenient representation. We chose the Fano representa-
tion where the real expansion coefficients with respect to
the 16 generalized Pauli matrices represent an arbitrary
density matrix [13]. Moreover, the Fano representation is
convenient for numerical simulation of the dynamics also.
By calculating the eigenvalues of the Jacobian in the Fano
representation for each numerically found cycle, we con-
cluded that among them the only stable cycle is the length
two cycle {p;, p,}, where

p1 = 5(10000] + [11)X11]),
pa = 4100X00] + [11)11] + (J01) + [10)(01] + (10])]
®)

The same calculation for the cycles known from the pure
initial state case indicated their stability against perturba-
tion by arbitrary mixed states. In Fig. 3 we show the
convergence towards the stable cycles of the mixed state
dynamics. The third, mixed stable cycle {p,, p,} denoted
by the lightest (yellow) color washes out the fine structure
of the pure state picture. Islands of purification towards
both fully entangled and completely separable states re-
main visible even for the value A = 0.75 of the mixing
parameter. Understanding the structure of convergent areas
requires further studies. An interesting question is whether

the number of the islands purifying to entangled states is
finite or it possesses a fractal structure.

Conclusions.—We have demonstrated that entanglement
in a quantum system can evolve truly chaotically, exhibit-
ing sensitivity to the initial condition. Our results give an
insight into the properties of the general pure state dynam-
ics of a protocol that is described by a nonlinear dynamical
map in three complex variables. We have found that ex-
tending the space of initial states to a special class of mixed
states, a new, mixed attracting cycle appears. It would
require further studies to decide whether adding other types
of noise to the initial state would introduce additional
attractors.
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