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The Rabi model is a paradigm for interacting quantum systems. It couples a bosonic mode to the

smallest possible quantum model, a two-level system. I present the analytical solution which allows us to

consider the question of integrability for quantum systems that do not possess a classical limit. A criterion

for quantum integrability is proposed which shows that the Rabi model is integrable due to the presence of

a discrete symmetry. Moreover, I introduce a generalization with no symmetries; the generalized Rabi

model is the first example of a nonintegrable but exactly solvable system.

DOI: 10.1103/PhysRevLett.107.100401 PACS numbers: 03.65.Ge, 02.30.Ik, 42.50.Pq

The Rabi or single-mode spin-boson model constitutes
probably the simplest physical system beyond the har-
monic oscillator. Introduced over 70 years ago [1], its
applications range from quantum optics [2] and magnetic
resonance to solid state [3] and molecular physics [4]. Very
recently, it has gained a prominent role in novel fields of
research such as cavity QED [5] and circuit QED [6]. It can
be experimentally realized in Josephson junctions [7] or
using trapped ions [8], in Cooper-pair boxes [9] and flux
q-bits [10]. In this way, its complete theoretical under-
standing is mandatory for all feasible approaches to quan-
tum computing [11]. Despite its old age and central
importance, the Rabi model has not been exactly solved
[3,12–15]. With the other paradigm of quantum physics,
the hydrogen atom, it shares an infinite-dimensional state
space but—in contrast to the latter—the spectrum and
eigenfunctions of the Rabi model are known only by
numerical diagonalization in a truncated, finite-
dimensional Hilbert space. This is quite surprising, as the
Rabi model has a smaller number of degrees of freedom
(d.o.f.) than the hydrogen atom. In particular, a single
d.o.f., subject to a harmonic potential, couples to a quan-
tum system with only two allowed states j "i and j #i.
Therefore, it does not possess a classical limit: the quantum
d.o.f. has a finite-dimensional Hilbert space and places the
Rabi model in between the case of one and two (classical)
d.o.f. The Hamiltonian reads (@ ¼ 1)

HR ¼ !ayaþ g�xðaþ ayÞ þ��z: (1)

Here, the �x;z are Pauli matrices for the two-level system

with level splitting 2� and a (ay) denote destruction
(creation) operators of a single bosonic mode with fre-
quency !. These two systems are coupled through a term
proportional to g, which has different interpretations ac-
cording to the experimental situation to model.

Although (1) represents the simplest of all physically
sensible interacting quantum systems, it poses a serious
obstruction to its analytical solution because of the appar-
ent lack of a second conserved quantity besides the energy,
which has led to the widespread opinion that it cannot be

integrable [16–21]. To remedy this difficulty, Jaynes and
Cummings (JC) proposed in the 1960s an approximation to
(1) which does possess such a quantity [22]. Their
Hamiltonian reads

HJC ¼ !ayaþ gð�þaþ ��ayÞ þ ��z; (2)

with �� ¼ ð�x � i�yÞ=2. Here, the operator C ¼ ayaþ
1
2 ð�z þ 1Þ commutes with HJC and leads at once to the

solvability of (2). The JC model is the so-called ‘‘rotating-
wave’’ approximation to (1) and was justified because the
conditions of near resonance 2� � ! and weak coupling
g � ! for such an approximation are realized in many
experiments. The conservation of C signifies that the state
space decomposes into an infinite sum of two-dimensional
invariant subspaces. Each eigenstate of (2) is then labeled
by C ¼ 0; 1; 2; . . . and a two-valued index, for example
þ and �, denoting a basis vector in the two-dimensional
subspace which belongs to C. Whereas the possible values
of C form an unbounded set, corresponding to the quanti-
zation of a classical d.o.f., the second quantum number can
take only two values, reflecting the intrinsic quantum
nature of the two-level system.
The conserved quantity C generates a continuous Uð1Þ

symmetry of the JCmodel (2)which is broken down toZ2 in
the Rabi model (1) due to the presence of the term ay�þ þ
a�� [14]. This residualZ2 symmetry, usually called parity,
leads to a decomposition of the state space into just two
subspaces H�, each with infinite dimension. One would
conclude that this symmetry cannot suffice to solve the
model exactly—but in fact it does. Whereas a discrete
symmetry is tooweak to accommodate a classical (continu-
ous) d.o.f., it can do so with a quantum d.o.f. We observe a
direct relation between the nature of the d.o.f. (continuous
or discrete) and the symmetry [Uð1Þ versus Z2], which can
be used to ‘‘eliminate’’ it by fixing the corresponding irre-
ducible representation.
Our main result is the following. The spectrum of (1)

consists of two parts, the regular and the exceptional
spectrum. Almost all eigenvalues are regular and given
by the zeros of the transcendental function G�ðxÞ in the
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variable x, which is defined through its power series in the
coupling g:

G�ðxÞ ¼
X1

n¼0

KnðxÞ
�
1� �

x� n!

��
g

!

�
n
: (3)

The coefficients KnðxÞ are defined recursively,

nKn ¼ fn�1ðxÞKn�1 � Kn�2; (4)

with the initial condition K0 ¼ 1, K1ðxÞ ¼ f0ðxÞ, and

fnðxÞ ¼ 2g

!
þ 1

2g

�
n!� xþ �2

x� n!

�
: (5)

To derive the result (3)–(5) for G�ðxÞ [23], we used the
representation of bosonic operators in the Bargmann space
of analytical functions [24].

The function G�ðxÞ is not analytic in x but has simple
poles for x ¼ 0; !; 2!; . . . (see Fig. 1); these poles are
precisely the eigenvalues of the uncoupled bosonic mode.
Then the regular energy spectrum of the Rabi model in
each invariant subspaceH� with parity�1 is given by the
zeros ofG�ðxÞ: for all values x�n withG�ðx�n Þ ¼ 0, the nth
eigenenergy with parity �1 reads E�

n ¼ x�n � g2=!.
For special values of model parameters g;�, there are

eigenvalues which do not correspond to zeros of (3); these
are the exceptional ones. All exceptional eigenvalues have
the form Ee

n ¼ n!� g2=!, and the necessary and suffi-
cient condition for the occurrence of the eigenvalue Ee

n

reads Knðn!Þ ¼ 0, which furnishes a condition on the
model parameters g and j�j. These exceptional solutions
to (1) have been known for a long time and were first
discovered by Judd [25]. They occur when the pole of
G�ðxÞ at xn ¼ n! is lifted because its numerator in (3)
vanishes. As then G�ðxÞ � 0, this eigenvalue has no defi-
nite parity and is therefore doubly degenerate.

The functional form of G�ðxÞ reads

G�ðxÞ ¼ G0�ðxÞ þ
X1

n¼0

h�n
x� n!

; (6)

where G0�ðxÞ is entire in x. The position of the solutions to
G�ðxÞ ¼ 0 is dictated by the pole structure of G�ðxÞ,
which leads to the conjecture that the number of eigenval-
ues in each interval ½n!; ðnþ 1Þ!� is restricted to be 0, 1,
or 2. Moreover, an interval ½n!; ðnþ 1Þ!� with two roots
of G�ðxÞ ¼ 0 can only be adjacent to an interval with one
or zero roots; in the same way, an empty interval can never
be adjacent to another empty interval. These conjectures,
which can be confirmed numerically, lead to a fairly regu-
lar distribution of the energies and a violation of the Berry-
Tabor criterion [18,26]. Figure 2 shows the lowest part of
the Rabi spectrum as function of g. There are no level
crossings within each parity subspace, allowing the unique
labeling of each state jc i with a pair of two quantum
numbers, jc i ¼ jn0; n1i: the parity quantum number n0,
which takes the values þ1 and �1, and n1 ¼ 0; 1; 2; . . . ,
which denotes the n1th zero of Gn0ðxÞ. The exceptional

solutions correspond to level crossings between Hþ and
H�. This characterization of each eigenstate through two
quantum numbers corresponding to the d.o.f. of the system
parallels the unique assignment of three quantum numbers
n, l, m to the eigenstates of the hydrogen atom, reflecting
the quantization of radial and angular d.o.f., a hallmark of
integrability.
It seems therefore natural to call a quantum system

integrable when such an assignment can be made—inde-
pendent of the explicit determination of conserved quanti-
ties or even action variables, which is only possible if the
system under consideration has an integrable classical limit
in the sense of Liouville. I propose the following criterion.
Criterion of quantum integrability.—If each eigenstate

of a quantum system with f1 discrete and f2 continuous
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FIG. 1 (color online). GþðxÞ [light gray (red) lines] and G�ðxÞ
[dark gray (blue) lines] in the interval [� 1; 5] for ! ¼ 1,
g ¼ 0:7, and � ¼ 0:4
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FIG. 2 (color online). Rabi spectrum for � ¼ 0:4, ! ¼ 1, and
0 � g � 0:8 in the spaces with positive [light gray (red) lines]
and negative [dark gray (blue) lines] parity. Within each space
the states are labeled with ascending numbers 0; 1; 2; . . . . This
labeling does not change with g because no lines intersect within
spaces of fixed parity. The spectral graph is composed of two
intersecting ‘‘ladders’’ of level lines, each corresponding to one
parity subspace. This labeling is used on the right side of the
figure. On the left side the states with g ¼ 0 are labeled by the
uncoupled d.o.f.; i.e., in j�; ni, þ or � corresponds to the two-
level system and n ¼ 0; 1; 2; . . . to the eigenstates of the bosonic
mode.
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d.o.f. can be uniquely labeled by f1 þ f2 ¼ f quantum
numbers fd1; . . . ; df1 ; c1; . . . cf2g, such that the dj can take

on dimðH jÞ different values, where H j is the state space

of the jth discrete d.o.f. and the ck range from 0 to infinity,
then this system is quantum integrable.

The criterion does not presuppose the existence of a
family of commuting operators whose different spectra
are associated with the fdj; ckg but provides a phenomeno-

logical condition on the spectral graph of the system, that
is, the spectrum as function of a parameter, typically one of
the coupling constants. Without such a deformation pa-
rameter (which must conserve integrability), the associa-
tion of more than one quantum number to the levels of a
nondegenerate spectrum is ill-defined and would be re-
stricted either to models solvable via Bethe ansatz [27] or
systems with integrable classical limit. As is well known,
the Berry-Tabor criterion [26] relies precisely on the ex-
istence of this limit and fails for models of the Rabi or
Jaynes-Cummings type.

According to the proposed criterion, integrability is
equivalent to the existence of f numbers to classify eigen-
states uniquely. It should be emphasized that these ‘‘quan-
tum numbers’’ are a more general concept than the radial
and angular quantum numbers known from atomic physics
because they are only defined with respect to the unique
description of eigenstates: the integrable systems differ
from the nonintegrable because they allow for a ‘‘fine-
grained’’ description through an f-dimensional vectorial
label, whereas the latter have a one-dimensional label
corresponding to energy as the only conserved quantity.
While a direct application to models with more than two
continuous d.o.f. is difficult, it allows us to define integra-
bility for the class of models in the quantum limit with less
than two classical d.o.f. which comprises many systems of
physical importance, e.g., the Dicke and Tavis-Cummings
models [28].

The Rabi model has f1 ¼ f2 ¼ 1 and degeneracies take
place between levels of states with different parity, whereas
within the parity subspaces no level crossings occur. The
spectral graph consists of two ‘‘ladders’’ of level lines
jn0; mi. Each ladder corresponds to an invariant subspace
of the Z2 symmetry characterized by n0 ¼ �, the parity
eigenvalue. The global label (valid for all values of g) is
two dimensional as f ¼ f1 þ f2 ¼ 2; the Rabi model
belongs therefore to the class of integrable systems.

It may be, however, that the symmetry is even stronger
than necessary to achieve integrability, analogous to the
classically ‘‘superintegrable’’ systems [29]. The JC model
is an example for this case. Here, the continuous Uð1Þ
symmetry leads to a further decomposition of the subspa-
ces with fixed parity. The larger number of dynamically
decoupled state spaces entails a second possibility to label
the states uniquely: through C and a two-valued index
n0 ¼ �. Now, all levels with different C may intersect,
leading not to just two but infinitely many ladders labeled

by C, each with two rungs, labeled by n0. In Fig. 3 the four
lowest levels of the Rabi model with positive parity are
compared with the corresponding levels of the JC model
with C ¼ 1; 3; 5. The enlarged symmetry of the latter leads
to two level crossings which are not present in the Rabi
model [30]. The appearance of intersecting ladders in the
spectral graph can be detected without knowledge of the
exact solution or the correct assignment of quantum num-
bers to the different levels, the only condition being a
sufficient numerical resolution to discern degeneracies
from narrow avoided crossings. This is a phenomenologi-
cal virtue of the proposed criterion which could be used in
computer experiments to test whether a given numerically
solvable system possesses a hidden integrable structure.
On the other hand, the absence of any level crossings in

the spectral graph is sufficient for nonintegrability if the
total number of d.o.f. exceeds one: It means that the states
can be classified only by energy, the single conserved
quantity always present in Hamiltonian systems, and no
invariant subspaces exists. In the context of the Rabi model
this case can be realized by breaking the Z2 symmetry. A
possible generalization of (1) reads

H� ¼ !ayaþ g�xðaþ ayÞ þ ��x þ ��z: (7)

The term ��x breaks the parity symmetry which couples
the bosonic mode and the two-level system. Physically it
corresponds to a spontaneous transition of the two-level
system which is not driven by the radiation field. The state
space does not separate into two subspaces, and indeed the
spectral graph exhibits no level crossings at all if � is not a
multiple of !=2 [31]. This is shown in Fig. 4. In this
situation, the eigenstates can be uniquely numbered
as belonging to the nth energy level in ascending order,
jc i ¼ jni. We have only one quantum number, energy,
corresponding to the sole conserved quantity. Because the
number of d.o.f. nevertheless exceeds one, this model must
be considered nonintegrable. Interestingly, (7) is still
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FIG. 3 (color online). The spectrum of the Jaynes-Cummings
model (black lines) compared with the Rabi model [gray (red)
lines] for � ¼ 0:4 and even parity. The state labeling of the
former has the form jc i ¼ jn0; Ci with n0 ¼ �. Two accidental
crossings occur between levels with C ¼ 5 and C ¼ 3 at g � 0:5
and between C ¼ 1 and C ¼ 3 at g � 0:73.
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exactly solvable, although it does not possess any symme-
try [23]. Define the functions

R�ðxÞ ¼ X1

n¼0

K�
n ðxÞ

�
g

!

�
n
; (8)

�R�ðxÞ ¼ X1

n¼0

K�
n ðxÞ

x� n!� �

�
g

!

�
n
: (9)

The K�
n ðxÞ are again recursively defined,

nK�
n ¼ f�n�1ðxÞK�

n�1 � K�
n�2; (10)

with the initial condition K�
0 ¼ 1, K�

1 ðxÞ ¼ f�0 ðxÞ, and

f�n ðxÞ ¼ 2g

!
þ 1

2g

�
n!� x� �þ �2

x� n!� �

�
: (11)

The nth eigenvalue En of (7) is given by the nth zero xn of

G�ðxÞ ¼ �2 �RþðxÞ �R�ðxÞ � RþðxÞR�ðxÞ (12)

through En ¼ xn � g2=!. The fact that H� can be diago-
nalized analytically although not even a discrete symmetry
is present signifies that integrability and solvability are not
equivalent in the realm of quantum physics. In contrast to
classical mechanics, nonintegrable quantum systems with
exact solutions exist.
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