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The Hilbert-Pólya conjecture states that the imaginary parts of the zeros of the Riemann zeta function

are eigenvalues of a quantum Hamiltonian. If so, conjectures by Katz and Sarnak put this Hamiltonian in

the Altland-Zirnbauer universality class C. This implies that the system must have a nonclassical two-

valued degree of freedom. In such a system, the dominant primitive periodic orbits contribute to the

density of states with a phase factor of �1. This resolves a previously mysterious sign problem with the

oscillatory contributions to the density of the Riemann zeros.
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The distribution of prime numbers among the integers is
a fundamental problem of number theory (see, e.g. [1]). It
is closely connected to the properties of Dirichlet L func-
tions (including the Riemann zeta function), defined via

Lðs; �Þ :¼ X1
n¼1

�ðnÞ
ns

(1)

for Res > 1 and by analytic continuation elsewhere, where
�ðnÞ is a primitive Dirichlet character: �ðnÞ is periodic
with smallest period d, has magnitude one or zero, is zero if
d and n are not coprime, and obeys �ðmnÞ ¼ �ðmÞ�ðnÞ.
The Riemann zeta function is given by �ðsÞ :¼ Lðs; 1Þ.
According to the generalized Riemann hypothesis, any
zero of Lðs; �Þ with 0< Res < 1 is on the critical line
Res ¼ 1

2 ; these are the nontrivial zeros, which we will

write as �k ¼ 1
2 þ i�k. The generalized Riemann hypothe-

sis implies that each �k is real, and this in turn can be
shown to imply that the number of primes less than x in the
arithmetic progression a; aþ d; aþ 2d; . . . (with a less
than and coprime to d) is, in the limit of large x,

�a;dðxÞ ¼ 1

’ðdÞ LiðxÞ þOðx1=2þ�Þ (2)

for all � > 0, where’ðdÞ is the number of integers less than
and coprime to d (the Euler totient function), and LiðxÞ is
the logarithmic integral function. The exponent of x in the
error term increases to 1

2 þmax Im�k þ � if the general-

ized Riemann hypothesis is false.
It is an old idea, now generally known as the Hilbert-

Pólya conjecture (see [2] for a historical review), that the
nontrivial zeros of each L function are the eigenvalues of
an operator (on some Hilbert space) that takes the form
1
2 þ iH, where H is self-adjoint; each L function would

have a different H. Furthermore, Lð12 þ iE; �Þ is conjec-

tured to be proportional to the spectral determinant
detðE�HÞ; since the eigenvalues of a Hermitian operator
must be real, the Hilbert-Pólya conjecture implies the
generalized Riemann hypothesis. An explicit construc-
tion of the H’s for the different L functions (or, less

ambitiously, just for the Riemann zeta function) would
therefore be extremely important.
A large body of analytic and numerical work strongly

supports the Montgomery-Odlyzko law (see, e.g., [3]),
which states that the statistical distribution of the �k’s for
each L function is the same as the Wigner-Dyson distribu-
tion of the eigenvalues of large Hermitian matrices with
real diagonal entries and complex off-diagonal entries,
each selected from a Gaussian distribution; this is the
Gaussian unitary ensemble (GUE) [4]. A large body of
analytic and numerical work also strongly supports the
Bohigas-Giannoni-Schmit conjecture [5], which states
that the energy eigenvalues of the Hamiltonian for a system
that is classically chaotic, and not time-reversal invariant,
also obey the GUE distribution. This leads to the general-
ized Berry conjecture [6]: the operator H for each L
function can be obtained by quantizing a classically cha-
otic system that is not time-reversal invariant.
Katz and Sarnak [7] have conjectured that L functions

corresponding to Dirichlet characters that are real [�ðnÞ ¼
0;�1] and even [�ð�1Þ ¼ þ1] form a ‘‘family’’ (that
includes the Riemann zeta function) whose members are
related (in some fashion) by a symplectic symmetry, and
furthermore that the spacings of the �k’s for each member
of this family are governed by the distribution of eigen-
phases of random unitary symplectic matrices. This agrees
with the GUE distribution for �k � 1, and predicts a
gap in the spectrum near zero; this is well supported by
numerical evidence from these L functions [7,8]. Other
proposed families have unitary or orthogonal symmetries.
Altland and Zirnbauer [9] have classified the possible

symmetry classes of quantum Hamiltonians. The distribu-
tion of �k’s found by Katz and Sarnak is a predicted
property of the energy eigenvalues for a chaotic system
in the Altland-Zirnbauer class C. We therefore interpret the
Katz-Sarnak conjecture, in the context of the Hilbert-Pólya
conjecture, to mean that the quantum system correspond-
ing to the Riemann zeta function (or any other member of
its symplectic family of L functions) should have a
Hamiltonian in class C.
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AHamiltonian in classC takes the form of a generator of
USpðNÞ; more specifically,

H ¼ Aþ ~� � ~S; (3)

where A is a Hermitian operator that (when expressed as a
matrix in a suitable basis) is imaginary and antisymmetric,
and each Si (i ¼ 1; 2; 3) is a Hermitian operator that (when
expressed as a matrix in the same basis) is real and
symmetric; finally, �i is a Pauli matrix acting in an
additional two-dimensional Hilbert space. This extra
‘‘nonclassical two-valuedness’’ (‘‘klassisch nicht bes-
chreibbare Zweideutigkeit,’’ Pauli’s [10] description of
electron spin) is a previously unrecognized essential ingre-
dient in any attempt to construct a quantum Hamiltonian
with eigenvalues corresponding to the imaginary parts of
the nontrivial Riemann zeros.

Next, consider the ‘‘completed’’ zeta function �ðsÞ :¼
�1ðsÞ�ðsÞ, where �1ðsÞ :¼ ��s=2�ðs=2Þ and �ðzÞ is the
Euler gamma function. The completed zeta function obeys
Riemann’s functional equation �ðsÞ ¼ �ð1� sÞ and is
real on the critical line; the zeros of �ðsÞ coincide with
the nontrivial zeros of �ðsÞ. It follows that the number of
zeros of �ðsÞ on the critical line with imaginary part
between zero and E> 0 is given by

NðEÞ ¼ 1

�
Im ln�

�
1

2
þ �þ iE

�
þ 1; (4)

where � is a positive infinitesimal [11]. We can write NðEÞ
as the sum of a smooth contribution and an oscillating
contribution [6]:

NðEÞ ¼ �NðEÞ þ NoscðEÞ; (5)

�NðEÞ ¼ 1

�
Im ln�1

�
1

2
þ iE

�
þ 1

¼ E

2�
ln

�
E

2�

�
� E

2�
þ 7

8
þOðE�1Þ; (6)

NoscðEÞ ¼ 1

�
Im ln�

�
1

2
þ �þ iE

�
: (7)

Using the Euler product formula �ðsÞ ¼ Q
pð1� p�sÞ�1,

where p is a prime, we get the formal expression

NoscðEÞ ¼ � 1

�
Im

X
p

lnð1� p�ð1=2þiEÞÞ

¼ þ 1

�
Im

X
p

X1
r¼1

p�rð1=2þiE=2Þ

r

¼ � 1

�

X
p

X1
r¼1

sinðrE lnpÞ
rpr=2

: (8)

This expression is formal because the Euler product does
not converge on the critical line. Its value is in its similarity
to the corresponding expression for the number of energy

eigenvalues less than E of a Hamiltonian for a classically
chaotic system whose classical periodic orbits are all iso-
lated and unstable. For a system without the two-valued
quantum degree of freedom required by class C, the
smooth contribution is given by the Weyl formula (see,
e.g., [12])

�NðEÞ ¼
Z dfxdfp

ð2�@Þf �ð0< hðx; pÞ< EÞ; (9)

where �ðSÞ ¼ 1 if S is true and 0 if S is false, f is the
number of classical degrees of freedom, and hðx; pÞ is the
classical Hamiltonian [13]. The oscillating contribution
is given by a formal sum over primitive periodic orbits
(labeled by ‘‘po’’) and their repetitions (labeled by r),

NoscðEÞ ¼ þ 1

�@

X
po

X1
r¼1

sinðrSpo=@� r�poÞ
rj detðMr

po � IÞj1=2 ; (10)

where the primitive orbit has action SpoðEÞ, Maslov phase

�poðEÞ, and stability matrix MpoðEÞ.
If we hypothesize a dynamical system in which the

primitive periodic orbits are labeled by prime numbers
[6], then Eq. (10) bears a strong resemblance to Eq. (8).
However, there are two well-known problems with getting
Eq. (10) to reproduce Eq. (8) precisely [6]. First,
j detðMr

po � IÞj generically does not have the form of a

simple exponential like pr. Second, no value of �po in

Eq. (10) will result in the overall minus sign on the right-
hand side of Eq. (8).
The generalization of Eq. (10) to class C has been

considered by Gnutzmann et al. [14]. As a prototypical
class-C system, they studied a Fermi sea of electrons (with
the Fermi surface at E ¼ 0) in a hard-wall billiard in a
strong magnetic field (to break time-reversal invariance).
There are then both electron and hole excitations, and�3 is
defined to beþ1 for electrons and�1 for holes. Part of the
billiard boundary is superconducting, and this leads to
Andreev reflection: when hitting the superconducting
boundary, an electron turns into a hole (and vice versa)
and ‘‘retroflects,’’ initially retracing the incoming path.
There is an extra phase factor of �i for each Andreev
reflection, in addition to the Maslov phase. In general,
the action of a primitive periodic orbit takes the form [14]

SpoðEÞ ¼ SðeÞpo ðEÞ þ SðhÞpo ðEÞ; (11)

where SðeÞpo ðEÞ [SðhÞpo ðEÞ] is the action of those segments of

the orbit where the excitation is an electron [hole]. For a
given segment,

SðhÞsegðEÞ ¼ �SðeÞsegð�EÞ: (12)

Gnutzmann et al. show that the dominant periodic orbits
are self-dual. A self-dual orbit includes an odd number NA

of Andreev reflections, and is traced twice, with each seg-
ment traced once as an electron and once as a hole. For a
self-dual orbit, we therefore have
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SpoðEÞ ¼ SðeÞpo ðEÞ � SðeÞpo ð�EÞ ’ E	po; (13)

where 	po ¼ 2@SðeÞpo =@E is the period of the complete

twice-traced orbit. The Maslov phases of the two tracings
cancel, but the factor of �i for each Andreev reflection
results in an extra overall factor of ð�iÞ2NAr ¼ ð�1Þr,
where r is the number of repetitions of the complete orbit.
Finally, there are two factors of the inverse square root of
the stability determinant, one for each single tracing. The
final result is therefore [14,15]

NoscðEÞ ¼ 1

�@

X
po

X1
r¼1

ð�1Þr sinðrE	po=@Þ
rj detðMr

po � IÞj : (14)

Equation (14) bears a much stronger resemblance to
Eq. (8) for the Riemann zeros than does Eq. (10). The
dominant orbit actions are linear in E, and the primitive
orbits contribute with the correct sign.

We can improve the agreement if we hypothesize that
the underlying dynamical system has primitive periodic
orbits that are labeled by both a prime p and another
integer k ¼ 0; 1; . . . (rather than by a prime p alone), and
that, for a primitive orbit so labeled, 	po ¼ 2k lnp and

j detðMr
po � IÞj ¼ expðr	po=2Þ [16]. With this ansatz, we

have (setting @ ¼ 1)

NoscðEÞ ¼ 1

�

X
po

X1
r¼1

ð�1Þr sinðrE	poÞ
rj detðMr

po � IÞj

¼ 1

�

X
p

X1
k¼0

X1
r¼1

ð�1Þr
r

sinð2krE lnpÞ
expð2kr lnp=2Þ : (15)

We now use the mathematical identity [17]

X1
k¼0

X1
r¼1

ð�1Þr
r

fð2krÞ ¼ �X1
r¼1

1

r
fðrÞ: (16)

Thus Eq. (15) becomes

NoscðEÞ ¼ � 1

�

X
p

X1
r¼1

1

r

sinðrE lnpÞ
expðr lnp=2Þ ; (17)

which matches Eq. (8) precisely. Thus, while the even
repetitions contribute with the wrong sign in Eq. (14), these
contributions can in principle be balanced (in a class-C
system) by correct-sign contributions from other primitive
orbits.

Next we consider our results in comparison with some
earlier work.

Connes [18] has suggested that the minus sign in Eq. (8)
should be explained by having the Riemann zeros be
missing eigenvalues in an otherwise continuous spectrum
of an appropriate Hamiltonian H. This would explain why
all repetitions contribute with the same sign, but leaves
open the fundamental problem that matching Riemann
zeros to missing eigenvalues does not allow for a potential
proof of the Riemann hypothesis by demonstrating that

�ð12 þ iEÞ / detðE�HÞ. Instead, Connes shows that the

Riemann hypothesis is equivalent to a certain trace formula
for a Hamiltonian with the desired continuous spectrum. In
the present work, we have provided an alternative expla-
nation for the sign discrepancy that still allows for the
original formulation of the Hilbert-Pólya conjecture.
Berry and Keating [19] have suggested that the quantum

Hamiltonian H corresponding to the Riemann zeta func-
tion should take the form of some quantization, on some
compactified phase space for 1 degree of freedom, of the
classical Hamiltonian hðx; pÞ ¼ xp. Here we note that this
Hamiltonian would be in class D. To see this, consider the
simplest Hermitian quantization on an uncompactified
phase space, H ¼ 1

2 ðXPþ PXÞ, where X and P are the

position and momentum operators. If we take matrix ele-
ments of this Hamiltonian between basis states with real
position-space wave functions, we get a Hamiltonian
matrix of the form H ¼ A, where A is imaginary and
antisymmetric. This characterizes Hamiltonians in class
D [9]. Class-D systems have broken time-reversal invari-
ance, and hence have eigenvalues with a statistical distri-
bution governed by GUE. However, since a class-D system
does not have the extra nonclassical two-valued degree of
freedom, Eq. (10) for NoscðEÞ applies, and so the generic
sign discrepancy with Eq. (8) is still present.
In conclusion, the combination of the Hilbert-Pólya

conjecture (that the imaginary parts of the nontrivial zeros
of the Riemann zeta function are the eigenvalues of some
quantum Hamiltonian) with the Katz-Sarnak conjecture
(that the Riemann zeta function is a member of a family
of L functions related by a symplectic symmetry) implies
that a Hamiltonian whose eigenvalues are the imaginary
parts of the Riemann zeros should reside in class C of the
Altland-Zirnbauer classification scheme. This implies that
the Hamiltonian should incorporate a nonclassical two-
valued degree of freedom. Systems in class C generically
have primitive periodic orbits that contribute to the density
of the Riemann zeros with the correct sign, further
strengthening the argument that class C is the right arena
to search for the elusive Riemann Hamiltonian.
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