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The unique sensitivity of optical response to different types of symmetry breaking can be used to detect

and identify spontaneously ordered many-body states in bilayer graphene. We predict a strong response at

optical frequencies, sensitive to electronic phenomena at low energies, which arises because of nonzero

interband matrix elements of the electric current operator. In particular, the polar Kerr rotation and

reflection anisotropy provide fingerprints of the quantum anomalous Hall state and the nematic state,

characterized by spontaneously broken time-reversal symmetry and lattice rotation symmetry, respec-

tively. These optical signatures, which undergo a resonant enhancement in the near-infrared regime, lie

well within reach of existing experimental techniques.
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Optical experiments have been successfully used to
probe diverse electronic phenomena in graphene [1]. For
bilayer graphene (BLG), physical properties such as the
gate tunable band gap [2,3] and the electron phonon
coupling [4,5] were investigated with the help of infrared
and optical spectroscopy. These techniques have also
been used to probe interaction effects such as band
renormalization [6,7] and exciton formation [8,9].
However, optical methods have not yet been employed
to investigate strongly correlated states, which are ex-
pected to form in BLG at low energies [10–18]. This
can be partly due to the low characteristic energy scales
for these symmetry breaking states, estimated to be of
order 1 meV [11], which lie far outside the range of
characteristic energies probed in optical experiments. In
this Letter, we point out that the problem of energy scales
is offset by the unique sensitivity of optical response to
broken symmetries, making these methods ideally suited
to the investigation of the interacting ground state
of BLG.

A large number of possible interacting phases have been
proposed for BLG [10–18]. Recent compressibility and
transport experiments on charge neutral, suspended,
double gated bilayer graphene [19–21] appear to confirm
the prediction of a nontrivial interacting ground state. The
experimental data were argued [21] to be consistent with
only two of the proposed phases: the quantum anomalous
Hall phase (QAH) predicted in [13,14], and the nematic
phase predicted in [15–17]. Both these phases are uniquely
interesting phases. The QAH phase spontaneously breaks
time-reversal symmetry (TRS) and exhibits quantum Hall
effect at zero magnetic field, while the nematic state in-
volves a distortion of the Dirac band structure that sponta-
neously breaks the exact rotational symmetry of the lattice.
If either of these phases is confirmed in BLG, it would
fulfill a long quest for an experimental realization of a
QAH instability [22] (QAH phase) or a Pomeranchuk
instability [23,24] (nematic phase).

The possible broken symmetries are expected to mani-
fest themselves through characteristic transport properties
such as a nonzero Hall response or anisotropy in longitu-
dinal conductance [10–18]. Detecting these effects in
transport experiments requires fabrication of samples of
BLG with at least four contacts, which proves challenging
in suspended BLG currently used in these experiments.
However, optical experiments allow us to measure the ac
conductivity in a contact-free manner. Furthermore, the ac
conductivity shows distinctive signatures of broken sym-
metry. The polar Kerr effect, wherein linearly polarized
light has its polarization axis rotated upon reflection, is a
well known optical probe of the Hall conductivity. It has
been used to probe quantum Hall states [25], and more
recently has been applied to topological insulator thin films
in the vicinity of a ferromagnet [26], and to pþ ip super-
conductors [27]. The Kerr effect is closely related to the
Faraday effect, which has been measured for graphene
in the quantum Hall regime [28]. However, unlike the
Faraday effect, which requires breaking of either TRS or
inversion symmetry, the polar Kerr effect can arise only if
TRS is broken [29], hence offering a direct test of the QAH
scenario for BLG.
As we show below, the QAH state exhibits an ac Hall

conductivity that undergoes a resonant enhancement in the
optical and near-infrared regime (see Fig. 1). The enhance-
ment occurs because the microscopic current operator has
interband matrix elements (Fig. 1 inset) corresponding to
transitions from the low-energy bands 1, 2 to the high-
energy bands 10, 20. As a result, the Kerr rotation is many
orders of magnitude larger than that observed in p-wave
superconducting materials [27], and lies well within reach
of existing experimental techniques.
Optical methods can be used to probe domain formation

expected to occur in the TRS breaking QAH phase. Since
different domains will produce a Kerr rotation of opposite
sign, the spatial domain structure can be directly imaged—
a significant advantage over transport experiments, which
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can only measure the net effect of all domains. For a
nonfocused optical experiment, the effect of random do-
mains will be to reduce the total Kerr angle by a factorffiffiffiffiffiffiffi
ND

p
, where ND is the number of domains.

While the Kerr rotation allows us to test for TRS break-
ing, anisotropy in reflection allows us to test for rotation
symmetry breaking. As we discuss below, this leads to a
characteristic dependence of the reflection amplitude on
the polarization angle of incident light which offers a way
to test the nematic scenario for BLG [15,17].

Finally, we note that spontaneous symmetry breaking is
only expected to occur below a critical temperature, esti-
mated to be of order 1–10 K [11,21]. The optical signatures
of interacting states will thus show a strong temperature
dependence, and will vanish entirely above a critical tem-
perature. This provides a way to distinguish spontaneously
broken symmetries from explicitly symmetry breaking
effects (e.g., magnetic impurities), which will not show
any comparable temperature dependence.

Electron properties of a clean BLG are governed by a
four-band Hamiltonian written for the four component
wave function c ¼ ðc 1; c 2; c 3; c 4Þ, describing electron
wave function on the sublattices A, B and A0, B0 on the two
layers:

HðpÞ ¼
0 tp 0 0
t�p 0 E0 0
0 E0 0 tp
0 0 t�p 0

2
6664

3
7775; E0 � 0:4 eV; (1)

with tp ¼ t0ð1þ e�ipe1 þ e�ipe2Þ, where t0 � 3:1 eV is

the hopping amplitude, and E0 is band gap parameter
for the upper and lower bands. The quantity tp vanishes

at the K and K0 points, behaving as vpþ near point K and
as �vp� near point K0, where p� ¼ px � ipy.

The Hamiltonian (1) features four bands with energies

"2ðpÞ ¼ jtpj2 þ 1

2
E2
0 �

1

2
E2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jtpj2=E2

0

q
: (2)

Near the points K and K0, this gives two massless Dirac
bands "1;2ðpÞ that cross quadratically at zero energy,

and two high-energy bands "10;20 ðpÞ � �E0. The disper-

sion near K and K0 can be obtained by expanding
in small tp=E0, giving "1;2 ¼ �jtpj2=E0 ¼ �v2p2=E0,

"10;20 ¼ �ðE0 þ v2p2=E0Þ.
We now consider the effect of interactions. Interactions

can open a bulk band gap between bands 1 and 2 [10–14],
resulting in a band structure of the form Fig. 1 (inset). One
particularly interesting gapped state is the QAH state,
[13,14], the mean field Hamiltonian of which we present
below. To exhibit more clearly the block structure we re-
order basis vectors by interchanging the components c 2

and c 4. In this representation, we obtain

HKðp;�Þ ¼
� 0 vpþ 0
0 �� 0 vp�

vp� 0 0 E0

0 vpþ E0 0

2
6664

3
7775; (3)

where � is the order parameter describing gap opening at
the K and K0 points, where HKðp;�Þ ¼ H�

K0 ð�p;��Þ.
The other possible gapped states [10–12] have a similar
mean field Hamiltonian, but the sign of � is distributed
differently among the spins and valleys. We note that under
time reversal, HKð�Þ �HK0 ð��Þ ! HK0 ð�Þ �HKð��Þ,
so this phase breaks TRS. In consequence, the QAH state
can exhibit a nonvanishing Hall conductance at zero mag-
netic field. However, the gap preserves the isotropy of the
band structure. Thus, the QAH state must exhibit isotropic
longitudinal conductivity.
Next, we discuss the relation between the Hall response

in the QAH phase and the Kerr rotation. We consider an
experimental setup where light is incident normally on a
BLG sheet that is placed on a substrate. If the BLG sheet
has a nonvanishing Hall conductance, then incident line-
arly polarized light will be reflected as elliptically polar-
ized light, with the major axis of the ellipse rotated
with respect to the incident polarization by the Kerr angle
�K. The standard formula relating the Kerr angle to the
Hall conductance is �K � Im�yx [29]. However, this for-

mula is derived for light incident on a conducting half
space, whereas we are considering a BLG sheet that is
much thinner than the optical wavelength. For this case,
the relationship between Hall conductivity and Kerr
angle must be calculated afresh. This was accomplished
using topological field theoretic methods in [26]. More
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FIG. 1 (color online). Kerr angle (in units of fine structure
constant � ¼ e2=@c) as a function of photon energy for BLG in
the QAH phase. Note the resonant enhancement near E0 ¼
0:4 eV, arising from direct transitions to the higher BLG bands,
Eq. (12). Inset: Schematic band structure of BLG near the K
point, for the QAH phase. The Kerr response arises from
transitions 10 ! 2 and 1 ! 20, involving states in the bands 1
and 2 which are affected by broken TRS.
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straightforwardly, the relationship may be obtained by
solving the Maxwell equations on two sides of the BLG
sheet and matching solutions at the boundary [30]. This
leads to an expression in agreement with [26], which takes
the form

�K ¼ Re
�ð8�=cÞ�yx

1� ðnþ 4�
c ð�xx þ i�xyÞÞ2

� 8�Re�yx

cðn2 � 1Þ : (4)

where n is the refractive index of the substrate, which is
taken to be real (complex case considered in [30]).

We now calculate the magnitude of the Kerr rotation, by
evaluating the conductivity. The ac conductivity can be
written using the Kubo formula as

�xy ¼ e2

i!

X
i;j;p

hi;pjVxjj;pihj;pjVyji;pi
!� ð"j;p � "i;pÞ þ i�

ðni;p � nj;pÞ; (5)

where i and j are band indices, ni;p ¼ nð"i;pÞ is a Fermi

function, and the sum over momenta p stands for an
integral. The velocity operators V� are defined as V� ¼
@HðpÞ=@p�, and � describes the excited state lifetime.

We focus on the contributions which correspond to
optical interband transitions between the massless low-
energy bands (i ¼ 1, 2), and the high-energy bands (i ¼
10, 20), which are separated from the low-energy bands by
the energy E0. We focus on these transitions because they
are of resonant character at a frequency close to the band
separation energy E0, and hence dominate the optical
response. We now note that hi;pjV�jj;pihj;pjV�ji;pi ¼
TrðV��i;pV��j;pÞ, where �i;p projects onto the state in

band i with momentum p. Assuming we are at a tempera-
ture T � E0=kB ¼ 4000K, we obtain

�xyð!Þ ¼ e2

i!

Z d2p

ð2�Þ2
TrðVx�10Vy�2 þ Vx�1Vy�20 Þ

!þ "10 ðpÞ � "2ðpÞ þ i�

� TrðVx�2Vy�10 þ Vx�20Vy�1Þ
!� "10 ðpÞ þ "2ðpÞ þ i�

; (6)

where we used the relation "20 � "1 ¼ "2 � "10 that
follows from particle and hole symmetry of the
Hamiltonian (3).

We evaluate the expression (6) for p near point K with
the help of the projectors

�1;2 ¼ 1

2

�
1� hðpÞ

khðpÞk
�
; �10;20 ¼ 1� ~�x

2
: (7)

Here ~�x acts on the B and A0 sublattices [lower right corner
of the Hamiltonian in (3)] and �10;20 projects on this

subspace. Meanwhile, �1;2 project on the A1 and B2
sublattices [upper left corner of Eq. (3)], and hðpÞ is the
effective two band Hamiltonian for the massless Dirac
states, which has eigenvalues EðpÞ ¼ �khðpÞk. The trace
over projectors takes the form

g1
02
�� ¼ TrðV��10V��2Þ ¼ h10jV��2V�j10i

¼ 1

4

r�t
�ðpÞ

r�tðpÞ
" #

T�
1� hðpÞ

khðpÞk
� r�tðpÞ

r�t
�ðpÞ

� �
g12

0
��

¼ TrðV��1V��20 Þ ¼ h20jV��1V�j20i

¼ 1

4

r�t
�ðpÞ

�r�tðpÞ
� �

T
�
1þ hðpÞ

khðpÞk
� r�tðpÞ

�r�t
�ðpÞ

" #
: (8)

Here r� denotes @=@p�. We now compute hðpÞ by using
second order perturbation theory in vp=E0, and obtain

hKðpÞ ¼ � v2p2þ=E0

v2p2�=E0 ��

� �
; (9)

hK0 ð�Þ ¼ h�Kð��Þ. This result agrees with [31]. We sub-
stitute this two band Hamiltonian into Eq. (8) and obtain

g1
02

xy ¼ g12
0

xy ¼ 1

4

�
1� �

khðpÞk
�
ryt

�ðpÞrxtðpÞ

þ 1

4

�
1þ �

khðpÞk
�
rytðpÞrxt

�ðpÞ; (10)

where we suppressed the terms arising from off-diagonal
parts of hðpÞ—these terms give zero upon integration

over d2p. Hence, we find g12
0

xy ¼ �g2
01
xy ¼ 1

2 iv
2 �
khðpÞk . We

substitute these results into Eqs. (6) and (8), to obtain

�xyð!Þ¼
Z d2p

khðpÞk
�

A�

!þi���p

þð�p!��pÞ
�

(11)

A ¼ Ne2v2=ðð2�Þ2!Þ, where N ¼ 4 is the number of spin/
valley flavors, and �p ¼ "2ðpÞ � "10 ðpÞ.
We now specialize to optical frequencies ! � �, and

also assume � � �. We approximate by taking khðpÞk �
v2p2=E0 and �p � E0 þ 2v2p2=E0, and perform the mo-

mentum integral in polar coordinates. The log divergence
near p2 ¼ 0 is cut by j�j, but there is no need for any
high-energy cutoff. In this manner, we obtain the Hall
conductivity

�xyð!Þ ¼ Ne2

h

�

2!

�
E0

!þ E0 þ i�
ln

�
E0 þ!þ i�

2j�j
�

þ E0

!� E0 þ i�
ln

�
E0 �!� i�

2j�j
��

: (12)

There is also a contribution from 1 ! 2 transitions,
which may be evaluated in the two band model [18,32].
This contribution, extrapolated to optical frequencies
!� E0 � � is of order ð�j�j=!2Þe2=h. This is smaller
than the contribution (12) by a large factor

E0

�
ln
E0

�
� 1: (13)

Thus, the Hall conductivity at optical frequencies is domi-
nated by transitions to the higher bands, necessitating our
four-band analysis.
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From the result Eq. (12) and the expression Eq. (4) we
can extract the Kerr angle �K. We take n ¼ 1:5, which
describes SiO2 substrate, and take � � 10�3 eV [11]. To
estimate �, we use the electron lifetime � & 0:02 ps from
[33], which corresponds to � * 0:01 eV. In Fig. 1 we plot
the resulting Kerr angle as a function of frequency using
value � ¼ 0:05 eV (a conservative choice) and find a Kerr
angle of order 10�3 radians. In optical experiments on
cuprate materials, Kerr angles as small as 10�9 radians
have been measured [27]. The 6 orders of magnitude larger
Kerr rotation in the QAH phase should thus be comfortably
within reach of experiments.

The nematic state [15–17] is another interesting ordered
state proposed to explain the experiments [20,21]. This
state is time-reversal invariant, featuring no Kerr rotation.
Instead, it breaks rotation symmetry of graphene crystal
lattice. The Hamiltonian for this state is

HKðp;�Þ ¼
0 � vpþ 0
�� 0 0 vp�
vp� 0 0 E0

0 vpþ E0 0

2
6664

3
7775: (14)

After reduction to the two low-energy bands, it becomes

hKðp;�Þ ¼
0

v2p2
þ

E0
þ �

v2p2�
E0

þ �� 0

2
4

3
5; (15)

where HK0 ð ~p;�Þ ¼ H�
Kð� ~p;�Þ, hK0 ð ~p;�Þ ¼ h�Kð� ~p;�Þ.

This Hamiltonian describes splitting of the quadratic
band crossing into two linear band crossings. The argu-
ment of the nematic order parameter � specifies the ori-
entation of the nematic axis, which is defined as the line
joining the two linear band crossings. The nematic axis
makes an angle ’ ¼ ��=2þ argð�Þ=2with respect to the
px axis. The nematic state manifestly breaks the approxi-
mate rotation invariance of the low-energy band structure,
which manifests itself in an anisotropic longitudinal con-
ductivity. Writing �ð�Þ ¼ �0 þ ��ð�Þ, where � is the
angle with respect to the x axis, we obtain an expression
for the reflection amplitude rð�Þ,

rð�Þ � 1� n

nþ 1
� 8�

cðnþ 1Þ2 ��ð�Þ: (16)

For high frequencies ! � �, we calculate using the for-
malism introduced above that

��ð�Þ � ie2

@

j�j
!

ln
E0 �!� i�

�
cos½2ð�� ’Þ	: (17)

Again, this exceeds the anisotropy calculated in the two
band model [18] by the large factor Eq. (13). We note that
trigonal warping of the BLG band structure arising from
higher neighbor hopping can also lead to a reflection
anisotropy. However, these effects respect the threefold
rotation symmetry of the lattice. In contrast, the anisotropy
resulting from formation of a nematic state exhibits a

twofold rotation symmetry. The breaking of the exact
lattice rotation symmetry can serve as diagnostic of the
nematic state.
To conclude, optical experiments can be used to probe

broken symmetries in BLG by measuring the conductivity
in a contact-free manner. The polar Kerr effect, by provid-
ing a means for measuring Hall conductivity, can be used
to detect the QAH phase. TRS breaking gapped states that
do not display a Hall conductance [14] can also be probed
using the Kerr effect, although for these states the Kerr
angle will be smaller than that for the QAH state by the

small parameter d=	, where d ¼ 3 �A is the BLG interlayer
spacing and 	 is the wavelength of the light used in the
experiment [34]. Nevertheless, this much weaker Kerr
rotation will still be much larger than that measured in
[27], and will be within reach of experiments. Meanwhile,
the nematic scenario for BLG may be probed by looking
for an angle dependence of the reflection amplitude, which
provides a direct test of broken rotational symmetry.
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