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We develop a theory of the coexistence of superconductivity (SC) and antiferromagnetism (AFM) in

CeCoIn5. We show that in Pauli-limited nodal superconductors the nesting of the quasiparticle pockets

induced by Zeeman pair breaking leads to incommensurate AFM with the magnetic moment normal to the

field. We compute the phase diagram and find a first order transition to the normal state at low

temperatures, the absence of normal state AFM, and the coexistence of SC and AFM at high fields, in

agreement with experiments. We also predict the existence of a new double-Q magnetic phase.
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The interplay between antiferromagnetism and uncon-
ventional superconductivity is one of the most intensely
investigated topics in correlated electron systems. The 115
family of heavy fermion compounds (CeMIn5, where
M ¼ Co, Rh, Ir) exhibits many salient features of this
interplay. CeCoIn5 is a clean layered singlet d-wave su-
perconductor whose upper critical field,Hc2, is determined
by the Zeeman splitting of the electronic states (Pauli
limiting), rather than by the orbital motion of the Cooper
pairs. This material has an unusual low-temperature phase
at fields just below Hc2, separated by a second order
transition line from the low field superconductor, and by
a first order transition from the normal (N) state (H � Hc2)
[1]. Initially this phase was conjectured [1] to be the
first realization of the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state, where Cooper pairs acquire a finite center of
mass momentum to counteract the pair-breaking due to
Pauli limiting, and the superconducting order parameter
oscillates in real space.

However, experiments present a more complex situ-
ation. The high-field N-SC transition becomes first order
at temperatures, T, higher than that of the onset of the new
phase [1]. Specific heat and resistivity are anomalous just
above Hc2, consistent with quantum critical behavior due
to antiferromagnetic fluctuations [2,3], yet AFM was not
found upon suppression of SC by several means [2,4–6].
Finally, a series of NMR and neutron scattering measure-
ments with H parallel to the layers established the
existence of static AFM in the high-field phase [7–12].
The ordered moment m ? H is modulated with an essen-
tially field-independent wave vector Q=ð2�Þ ¼ ðq; q; 0:5Þ,
(q ’ 0:44) [9,11]. This unusual phase challenges our
understanding of the connection between SC and AFM.

In this Letter we show that the near-perfect nesting of the
quasiparticle pockets created by Zeeman pair-breaking
near the nodal regions creates the conditions for the anti-
ferromagnetic instability even when the normal state Fermi
surface is not nested. This AFM instability is equivalent to
equal spin pairing of Bogoliubov quasiparticles within

each pocket. We compute the transition temperature
both analytically in the weak-coupling limit (WCL) and
numerically for a two-dimensional (2D) model. The result-
ing coexistence of AFM and SC appears in the low-
temperature and high-field region of the phase diagram,
while magnetic order does not appear in the normal state.
Moreover, the N-SC transition becomes first order at a
temperature above that where the magnetic order first
appears. These results are in agreement with the experi-
mental observations on CeCoIn5. The most favorable mag-
netic state in the WCL is a double-Q collinear structure at
the incommensurate wave vectors connecting opposite
nodes, withm ? H, but a single-Q state may be stabilized
in a part of the phase diagram.
Previous theories focused on the field induced AFM and

only considered the single-Q state. In some proposals the
amplitude modulation of the superconducting order pa-
rameter, �ðrÞ, is essential and drives a spin density wave
(SDW) order that varies on the same length scale [13,14].
In other theories the SDW instability is not conditional on
the oscillatory behavior of �ðrÞ [15–17]. In Refs. [15,16]
the direction of the SDW magnetization was taken parallel
toH, and the phase diagram was obtained numerically for
fixed (large) values of interactions in different channels.
We find that the longitudinal antiferromagnetic suscepti-
bility is gapped under Zeeman field, but the transverse
susceptibility is divergent. Hence, AFM with m ? H ap-
pears naturally. Landau expansion of the free energy in a
model with critical magnetic fluctuations also supports
m ? H for nodal superconductors [17]. It was recently
suggested [18] that an enhancement of the density of states
above the normal state value due to combined effect of
vortices and strong Pauli paramagnetism leads to the SDW
instability, with no FFLO-like modulation of �ðrÞ. In our
theory it is the nesting between pockets, and therefore
the joint density of states enhancement, that drives the
magnetic transition. Finally, we propose the existence
of a double-Q spin structure that differs from previous
theories and provides a test of our results.
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Since the main Fermi surface sheet of CeCoIn5 is qua-
sicylindrical, we consider a 2D Hamiltonian for a dx2�y2

superconductor with a Zeeman term h ¼ g�BH=2,

H 0 ¼
X

k�

ð"k � h�Þcyk�ck� �X

k

ð�kc
y
k"c

y
�k# þ H:c:Þ:

Here, "k is the band dispersion and �k is the dx2�y2

order parameter. We select the spin quantization axis along

H. A Bogoliubov transformation �k" ¼ ukck" � v?
kc

y
�k#,

�k# ¼ukck# þv?
kc

y
�k", with 2jukj2¼½1þ"k=Ek�, 2jvkj2 ¼

½1� "k=Ek�, and Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2k þ �2

k

q
brings the Hamiltonian

to the diagonal form

~H 0 ¼
X

k

f½Ek � h��y
k"�k" þ ½Ek þ h��y

�k#��k#g: (1)

The first term describes the creation of spin-polarized
pockets of Bogoliubov quasiparticles by magnetic field.
These pockets are unstable to the formation of AFM, and
we first elucidate this instability in the WCL.

At low fields we linearize the dispersion in the near-
nodal regions by taking "k � vFk? and �k � v�kk with

k? (kk) measured from the node normal (parallel) to the

Fermi surface (see Fig. 1) and obtain elliptical Fermi

pockets
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
Fk

2
? þ v2

�k
2
k

q
¼ h. For a centrosymmetric sys-

tem with pairs of nodes at momenta �kni, the low field
pockets are perfectly nested at Qi ¼ 2kni and �Qi ¼ �2kni
(i ¼ 1, 2; see Fig. 1), even though the Fermi surface in the
normal state is not. This nesting drives the instabilities of
the superconducting state.

As 115 materials exhibit strong antiferromagnetic fluc-
tuations, we assume that there is a residual interaction in
this channel. We start by considering the simplest AFM

with m ? H: a single-Q spiral mðrÞ ¼ mQðcosQ � r;
sinQ � r; 0Þ, where Q 2 �Qi is one of the four wave-
vectors that are perfectly nested. The mean field
Hamiltonian for this spiral order is

H AFM ¼ �J
X

k

½mQc
y
k#ckþQ" þm�

Qc
y
kþQ"ck#�; (2)

where mQ ¼ P
khcykþQ"ck#i=N, J is the coupling constant,

h. . .i denotes a thermodynamic average, and N is the
number of lattice sites.
Since a Bogoliubov quasiparticle with a given spin at

momentum k combines an electron state with the same
spin at k with a hole with opposite spin at �k, the AFM
interaction in the particle-hole channel is manifested as a
spin triplet superconducting instability of the Bogoliubov
quasiparticles within each pocket. Transforming Eq. (2)
into the basis of Bogoliubov states we find

cykþQ"ck# ¼ �ukþQv
?
k�

y
kþQ"�

y
�k" þ irr:

Note that we only need to consider the quasiparticles with
the spin along the field (occupied states). The terms
marked as irrelevant (irr.) include spin-down Bogoliubov
operators, and therefore do not have an expectation value
since these excitations are gapped by h. Consider the
vicinity of the node �Q=2. We have k ¼ �Q=2þ q, so
that kþQ ¼ Q=2þ q, and we find

cykþQ"ck# ¼ �uðQ=2Þþqv
?
�ðQ=2Þþq�

y
ðQ=2Þþq"�

y
ðQ=2Þ�q" þ irr:;

which describes the triplet pairing of ‘‘Bogoliubons’’
within the same pocket. Since ukþQv

?
k � sgnðkkÞ in the

linearized approximation for a d-wave gap, we obtain

H ¼ X

q

½ðE�ðQ=2Þþq � hÞ�y
�ðQ=2Þþq"��ðQ=2Þþq"

þ Jm�
Q�

y
ðQ=2Þþq"�

y
ðQ=2Þ�q"sgnðqkÞ þ H:c:�; (3)

showing p-wave pairing symmetry. The sum in Eq. (3)
runs over wave-vectors q near the pocket center, i.e.,
jqj � �=a. This approximation is valid as long as Q is
far from the commensurate wave vector (�, �). In that
case, only the wave vectors on the Fermi surface of the
pocket centered at �Q=2 satisfy the nesting condition for
the transferred momentum Q (see Fig. 2).
The critical temperature in the WCL is

TQ � ffiffiffiffiffiffiffiffiffi
!ch

p
exp

�
� 2�2vFv�

Jh

�
; (4)

where !c is the high energy cutoff for the magnetic
interaction J. This result is valid for TQ � h �
f!c;�0g, and describes the instability of the uniform SC
towards the AFM modulation. It is likely that the exponen-
tially small m at low H is destroyed by the orbital effect
(see below). The order parameter that appears at TQ,P

qsgnðqkÞh�y
Q=2þq"�

y
Q=2�q"i, has a staggered triplet super-

conducting component, �t
Q ¼ P

q�
t
qhcy�Q=2þq"c

y
�Q=2�q"i
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FIG. 1 (color online). Fermi surface and the nodal pockets
generated by Zeeman field for the tight-binding model described
in the text with �0=t ¼ 0:7, h=t ¼ 0:3, 0.7. kk and k? corre-

spond to the directions parallel and perpendicular to the Fermi
surface near each pocket.
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with sgnð�t
qÞ ¼ sgnðqkÞ, in addition to the AFM mQ

[15,16]. This triplet component is an inevitable companion
of�0 andmQ since the Ginzburg-Landau expansion allows

for the invariants of the form �Q �m �Q�
�
0 þ��

�Q
�mQ�0,

linear in �Q, where �Q is the vector of three independent

components of the triplet superconducting order parameter
(2�t

Q ¼ �x
Q þ i�y

Q). However, we expect �t
Q to be ex-

traordinary fragile with respect to impurity scattering so it
cannot be easily observed in CeCoIn5.

To go beyond WCL, we consider a mean field
Hamiltonian with both SC and AFM interactions,

H ¼ X

k�

ð"k � �hÞcyk�ck� �X

k

ð�kc
y
k"c

y
�k# þ H:c:Þ

� J
X

k

½mQc
y
k#ckþQ" þ H:c:� þ j�0j2

V
þ JjmQj2; (5)

with a tight-binding dispersion "k¼2tðcoskxþcoskyÞ��.

We fix �=t ¼ 0:749 which sets the wave vectors con-
necting the nodal points to Q ¼ ð�0:88�;�0:88�Þ. The
order parameter�k ¼ �0�k with �k ¼ coskx � cosky and

�0 ¼ V
P

k�khc�k#ck"i. Again we first consider a single-Q
XY magnetic ordering. We diagonalize H and minimize
the free energy to obtain the phase diagram as a function h
and T for given interactions J and V. The phase diagram
becomes unstable towards magnetic ordering at Jc ¼ 3:6t.
Consequently, we choose J ¼ 3:5t to describe a system
with strong AFM tendencies. The phase diagram for
V ¼ 3:0t in Fig. 3 shows the coexistence of AFM and
SC (Q phase) below TQ < T? at high fields as well as the

first order N to SC transition at 0< TcðhÞ< T?. The latter
appears here due to purely Zeeman coupling to the field,
dominant at high fields for Pauli-limited CeCoIn5, but is
known to persist in the presence of moderate orbital effects
[19]. The phase diagram is qualitatively the same for
0:9Jc & J < Jc and is robust against changes of V and
the inclusion of the next-nearest neighbor hopping t0.
This strong coupling result confirms the instability analyti-
cally found in the WCL [see Eq. (4)], and shows that the
phase diagram is ubiquitous for systems such as CeCoIn5.

The above analysis demonstrates the instability of a
Pauli limited d-wave superconductor towards incommen-
surate AFM. We now determine the most stable magnetic
order. If the nodes of the order parameter are located at

ð�1=
ffiffiffi
2

p
;�1=

ffiffiffi
2

p ÞkF, there are four distinct wave vectors,

Qi ¼ ð� ffiffiffi
2

p
;� ffiffiffi

2
p ÞkF that connect the nodal quasiparticle

pockets. The most general magnetic structure in the

SDW state is mðrÞ	mxðrÞþ imyðrÞ¼
P

j¼1;2½mQj
eiQj�rþ

m �Qj
ei

�Qj�r� (recall the spin z axis is along H). As CeCoIn5
has an easy c axis (taken as the spin x axis), the state with
my ¼ 0 is energetically more favorable. Now consider

each single-Q term cykþQ"ck#. Recall that we pair spin-up

Bogoliubov quasiparticles and that the electron creation
(annihilation) operator at k is a linear combination of the
Bogoliubov creation (annihilation) operator with the same
momentum and spin, and an annihilation (creation) opera-
tor with the opposite spin and momentum. As Fig. 2 shows,
for k, for example, in the pocket centered around �kn1,
Eq. (2) produces a logarithmically divergent pairing inter-
action only for Q ¼ Q1 ¼ 2kn1. In contrast, if k is in the
vicinity of kn1, only Q ¼ �Q1 ¼ �2kn1 is relevant for the
AFM instability. Similar analysis applies to the other pair
of pockets. Since Qi are far from (�, �), in the WCL the
equations for the four Fourier components mQi

decouple,

look identical, and hence jmQi
j ¼ m0 for all Qi. The

conditionmy ¼ 0 immediately yields a double-Q collinear

structure, mðrÞ¼m0½cosðQ1 �rþ’1ÞþcosðQ2 �rþ’2Þ�,
with m k ĉ and simultaneous modulation of SDW along
the [110] and [1�10] directions. Note that the stabilization of
this structure is simply due to the counting of the minimal
number of independent Fourier components of the order
parameter that are needed to fully gap the Fermi pockets of
Bogoliubov quasiparticles. The same counting leads to the
single-Q collinear phase of Cr [20].
Beyond WCL, as states away from the Fermi surface

participate in AFM, generally single-Q structures become
advantageous [21]. In CeCoIn5 elastic neutron scattering

−kk

k+Q −k

node

Q −Q

k

k−Q

FIG. 2 (color online). Conditions for pairing of the Fermions at
the nodal pockets due to the term cykþQi"ck#: a placeholder.

Dotted line: Fermi surface, green dots: nodes. Left panel: If k
is in the lower pocket, only the term with Qi ¼ Q satisfies the
nesting condition and leads to pairing. Right panel: If k is in the
upper pocket, only Qi ¼ �Q is relevant.
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FIG. 3 (color online). Phase diagram obtained for V ¼ 3t and
J ¼ 3:5t. Open and filled circles indicate first and second order
phase transitions, respectively. The red circles are the boundary
between the SC and N states, while the blue circles are the
boundary for the magnetically ordered phase.
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[9] finds a single-Qmodulation withQ ? H forH along a
nodal direction [1�10], and NMR lineshape at H > 10:2 T
is consistent with a single-Q structure [8,10]. At these high
fields the large size of the Bogoliubov pockets leads to an
intermediate or strong coupling regime. The first question
is whether at lower fields, where pockets are small, our
proposed double-Q structure is realized. NMR measure-
ments of Ref. [10] show an anomalous broadening of the
line shape for 9:2 T & H & 10:2 T and T ¼ 70 mK.
Moreover, 9.2 T is precisely the field at which the ampli-
tude of the ordered moment of the single-Q structure
extrapolates to zero, suggesting that another form of mag-
netic ordering persists in the 9:2 T & H & 10:2 T region.
The double-Q structure is a natural candidate for this
intermediate phase because it produces a broad NMR
line shape that is consistent with the experimental obser-
vation. Detailed neutron and NMR experiments will be
able to test this hypothesis. Thermodynamic signatures of
the transition from double to single-Q phase are expected
to be weak.

ForH k nodes, the orbital coupling suppresses the SDW
modulation with Q ? H at low fields. Within the semi-
classical approximation the Doppler shift, �E � vF � ps,
where ps ? H is the momentum of the Cooper pairs, has
opposite sign for the two pockets connected by Q, as
vF1 ¼ �vF2. From Eq. (1) this expands one of the pockets
and shrinks its counterpart, breaking the nesting condition.
For some Fermi surface geometries an additional field-
dependent modulation may still allow SDW formation,
similar to pnictides [22,23] and exciton formation [24].
Generically, however, AFM is favored when the typical

Doppler shift �ED 
 �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H=Horb

c2

q
� �BH, where Horb

c2 is

the orbital critical field. In CeCoIn5 this gives fields
H � H2

P=H
orb
c2 , where HP is the Pauli limiting field, above

20%–40% of the observed Hc2ðT ¼ 0Þ. The semiclassical
approach is inadequate at high fields [25] where a more
detailed analysis is required to determine whether the
Q ? H state is stable. In weak coupling at low fields,
SDW with Q k H may exist since �E vanishes for the
quasiparticle pockets around the nodes aligned with the
field [26], but TQ is exponentially small.

Anisotropic spin-spin interactions induced by the spin-
orbit coupling may also favor ordering with Q ? H, but
depend on specific models. An intriguing possibility is that
this choice is due to putative FFLO state. In the presence of
vortices the FFLO modulation is along the field at a wave
vector determined by the field magnitude, and interferes
destructively with the AFM atQ k Hwhose wave vector is
fixed by the position of the SC nodes. Hence Q ? H is
stabilized. Since generically the TQðHÞ that we find differs
from the onset of the FFLO modulation, one expects two
transitions from the superconducting state, first to a
double-Q AFM, followed by the FFLOþ single-Q state.
Further experiments will distinguish between these
scenarios.

To summarize, our theoretical framework describes a
generic instability of Pauli-limited unconventional super-
conductors under Zeeman effect. This instability leads to
incommensurate AFM at the wave vectors connecting
opposite nodal points. Our theory describes the existing
experiments on CeCoIn5 and suggests studies to identify
the double-Q collinear phase that we find to be favorable in
the weak-coupling regime, and which may exist in the
intermediate field range.
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