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Generation and Amplification of Magnetic Islands by Drift Interchange Turbulence
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We investigate the multiscale nonlinear dynamics of a linearly stable or unstable tearing mode with
small-scale interchange turbulence using 2D MHD numerical simulations. For a stable tearing mode, the
nonlinear beating of the fastest growing small-scale interchange modes drives a magnetic island with an
enhanced growth rate to a saturated size that is proportional to the turbulence generated anomalous
diffusion. For a linearly unstable tearing mode the island saturation size scales inversely as one-fourth
power of the linear tearing growth rate in accordance with weak turbulence theory predictions. Turbulence
is also seen to introduce significant modifications in the flow patterns surrounding the magnetic island.
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Plasmas in nature as well as in laboratory devices often
harbor large scale magnetic structures that play an impor-
tant role in the global dynamics of the system. Some well
known examples of such structures are solar flares or
coronal loops in the sun and magnetic islands in a tokamak
plasma [1]. Quite frequently these structures coexist with
fine scale micro-structures associated with turbulent fluc-
tuations arising from various microinstabilities in the sys-
tem. While the occurrence of these disparate scales of
disturbances can be broadly attributed to the macrosopic
and microscopic stability properties of the system, their
origins and dynamics are often not independent of each
other and can be the result of a complex multiscale inter-
action process. Thus a large scale magnetic island may
result not only from a macroscopic tearing instability
but may also be driven by small-scale microturbulence.
Likewise a growing magnetic island may significantly
influence the character and evolution of ambient turbulent
fluctuations in the system and thereby alter its global
transport properties. The mutual interaction between mi-
croturbulence and macro modes in a plasma continues to
be an active and challenging area of research with impor-
tant applications to several astrophysical and laboratory
phenomena. One such fundamental problem involves the
excitation and dynamical behavior of a tearing mode due to
the presence of a background of microscopic turbulence.
Early analytic attempts to investigate this important ques-
tion used ad-hoc modeling of turbulence effects through
anomalous transport coefficients [2] to study the threshold
behavior and modified growth rates of tearing modes. In
[3] a stochastic turbulence noise source was introduced in a
Rutherford model to demonstrate the possibility of trigger-
ing a small size “‘seed” island. A multiscale numerical
simulation study in [4] showed that microscopic fluctua-
tions due to resistive drift wave turbulence could enhance
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the growth of a tearing mode to a rate much faster than its
linear one. Conversely, it was shown in [5] that the recon-
nection rate may be reduced in the presence of a turbulent
flow due to a transfer of energy from the MHD instability
into shorter wavelength modes. In [6], a critical island
width was identified such that below (above) it turbulence
enhanced (healed) the magnetic island. Numerical sim-
ulation studies in [7,8] have addressed the problem of
multiscale interactions, taking into account the nonlinear
modifications of the equilibrium due to the interaction of
the profiles, zonal flows and MHD instabilities with the
turbulence. However, several basic questions still remain
unresolved, e.g., the mechanism and conditions determin-
ing the excitation of a magnetic island by microturbulence
and the nature and role of flows surrounding the saturated
island structure. Our present study is motivated by these
questions and is aimed at a detailed investigation of
these points through numerical simulation studies of the
interaction between tearing modes and drift interchange
turbulence under a variety of conditions. Interchange type
turbulence is generic in a tokamak plasma where they can
arise in the core region through instabilities of the ion
temperature gradient (ITG) mode or the trapped electron
mode (TEM) [9]. They can also be found in the tokamak
edge region under high B conditions when they tend to
predominate over electrostatic drift modes. Our principal
findings are that the generation and enhanced rate of
growth of the magnetic island is predominantly due to
the nonlinear beating of the fastest growing small-scale
interchange modes and happens irrespective of whether the
tearing mode is linearly stable or unstable. For a linearly
stable tearing mode the nonlinear saturation size of the
island has a linear dependence on the magnitude of
the “anomalous” diffusion created by the turbulence. For
a linearly unstable tearing mode the saturated island
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width scales inversely as the one-fourth power of the linear
growth rate of the tearing mode. Another finding is that the
large scale asymptotic flow structure outside the saturated
island has a dipole pattern and differs significantly from the
conventional quadrupole patterns seen in tearing mode
islands that develop in the absence of turbulence. Finally,
we also see evidence of the magnetic island modifying
the nature of the turbulence through symmetry breaking
mechanisms.

Our simulations are carried out on a minimalist two-
dimensional plasma model based on the two fluid
Braginskii equations in the drift approximation [10,11]
with cold ions and isothermal electrons. The model in-
cludes magnetic curvature and electron diamagnetic
effects [12]:
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where the dynamical field quantities are the electrostatic
potential ¢, the electron pressure p and the total magnetic
flux ¢ (with ¢, = ¥ ((x) denoting its equilibrium profile).
The equilibrium consists of a constant pressure gradient
and a magnetic field given by the Harris current sheet
model [1,13], namely, By(x) = tanh(ki—*/z)y, where L, is
the box size in the x (radial) direction and a determines the
width of the profile. Egs. (1)—(3) are normalized using the
characteristic Alfven speed vy, the magnetic shear length
L and the Alfven time 74 = L /v,. Curvature effects
are included through «; (i = 1, 2) parameters and are
responsible for the interchange instabilities.

The impact of interchange turbulence on the formation
of a magnetic island is investigated by means of linear and
nonlinear simulation of Egs. (1)-(3). A semispectral code
is used including a 2/3 dealiazing rule in the y (poloidal)
direction, a resolution of 256 grid points in the x (radial)
direction and 64 poloidal modes. The computational box
size is Ly = 27 and L, = 57. The perturbed fields are
periodic in the y (poloidal direction) and are set to zero at
the radial boundaries. The Fourier decomposition of the
fields is typically defined as ¥ (x, v, 1) = 3.,z ¥ n(x, 1) X
exp(ik,,y) with k,, = 27m/L,. The parity (odd or even
symmetry in the spatial coordinate) of the eigenfunctions
Yo, 1), ¢,(x, 1), pa(x, t) provides a distinct marker of
identification of a given mode m and helps in pinpointing
the instability mechanism generating it. The resistive inter-
change mode m has (odd, even, even) parities with respect
tox € [—L,/2,L,/2], for (¢,,, ¢, Pm), respectively, and

(even, odd, odd) parities for tearing modes. In this study we
have fixed p = 0.04, v, = 1072, Kk, = 0.36 and the dis-
sipative parameters (u, x | , 17) are taken to be equal to 104,
As shown in [12], in order to overcome the stabilizing
effect of large scale magnetic field with respect to inter-
change modes, a large value of the curvature parameter is
required and we set xk; = 5. We next categorize the most
unstable interchange mode number by m, and its growth
rate by 7y, . Typically m, > 1. In this work the modes
m = 2 are stable with respect to tearing instability. The
nature (parity) of the m = 1 mode depends on the compe-
tition between the interchange and tearing instabilities.
The stiffness of the magnetic equilibrium profile modifies
the growth rate of both interchange and tearing modes. As
seen in [12], the smaller A’ is, the larger are m, and Vo,
(e.g., for A’ = —0.15, the spectrum of the unstable modes
is quite broad and ranges from m =1 to m = 29 with
my = 15 and for A’ = 1.16 gives a spectrum from m =2
to m = 13 with m, = 6). The value of the m = 1 tearing
stability index A’ can be seen as a measure of the stiffness.
For the Harris equilibrium the value of A’ for a given mode
number can be easily varied by changing the parameter a
while holding the box size to be constant.

To investigate how the small-scale interchange modes
affect the formation of a magnetic island, we carry out a
range of linear and nonlinear simulations with different
values of A’. Figure 1 shows the linear growth rate of the
modes m = m, and m = 1asafunction of the parameter A’.
The colors distinguish the nature (parity) of the modes.
The mode m, (A’) € [6, 17] is linearly unstable and has an
interchange parity.

Linearly, the m = 1 mode develops an interchange par-
ity as soon as |A’| is of the order of unity or smaller (A’ is
not large enough to let the tearing mode grow in place of
the linear m = 1 interchange mode). The nonlinear simu-
lations show, that, starting from a linear situation where the
m = 1 mode is driven by interchange instability without
the formation of a magnetic island, a nonlinear beating of
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FIG. 1 (color online). Growth rates of the modes m, and
m = 1: blue points correspond to a mode with tearing parity
and red points correspond to a mode with interchange parity.
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the most unstable interchange modes, m, and m,, gives
rise to the formation of an m = 1 island with an enhanced
growth rate. As an example, for A’ = —0.45, the most
unstable mode is m, =17 with vy, =~ 0.0198. The
sideband growth rates are of nearly equal magnitude,
Ym,+1 =~ 0.0196. As shown in Fig. 1, the nonlinear growth
rate of the m = 1 mode is about 0.038 which is much larger
than the linear growth rate and nearly the sum of the growth
rates of the m = m, interchange mode and its sideband.
This trend of Y\ ~ v, + ¥,,,., ~ 27¥,, > v} holds over
the entire range of A’ values shown in Fig. 1. The nonlinear
beating of the interchange modes also leads to a change in
the parity of the driven m = 1 mode. As a consequence a
magnetic island is nonlinearly generated by the pumping of
the interchange modes even when A’ < 0. Indeed, an im-
portant property of all the nonlinearities in Eqgs. (1)-(3)
is that, if initially, the system is driven by small-scale
interchange modes Iy, their mutual interactions can
only drive tearing parity large scale fluctuations T:
{l, I} — Ti;. One might ask at this point whether a
secondary tearing instability governs the generation of
the nonlinear m = 1 magnetic island? A detailed analysis
of our simulation results show that, during the nonlinear
formation of the island, the mode beating process does not
generate a local modification of the equilibrium profile. In
other words, the nonlinear interactions do not lead to an
alteration of the mode ¢, and indeed does not bring about
an increase of A’ and a consequent destabilization of the
tearing mode. Figure 2 shows the time evolution of the
kinetic energy of the modes (a) m = 0, 1, and (b) m = my,
my + 1 for a nonlinear simulation run with A’ = —0.45.
Different regimes are observed. For 0 = ¢/7, = 300, the
dynamics is purely linear. The modes possess the inter-
change parity and grow at the linear interchange growth
rates. Then, for 300 < t/7, =< 750, we enter the accelerat-
ing phase where the growth rate of mode m = 11is ~2y,, .
More precisely, the mode m = 0 is generated with a tearing
parity thanks to a beating of the mode m, with itself which
gives yg ~ 27y, . So as soon as 2y, > vy, the tearing
instability being no more efficient, the pumping mecha-
nism from small scales to large scale governs the formation
of the magnetic island. It should be mentioned that a
similar enhancement of the island growth was first ob-
served in [4] where an unstable tearing mode was evolved
in the presence of drift wave turbulence.

Then, from /7, > 750, the dynamics becomes fully
nonlinear. The island continues to grow slowly and finally
reaches the saturation regime asymptotically. At the inter-
change scales the system saturates energetically where the
large scale modes m = 0 and m = 1 dominate (Fig. 2).
The interchange mode m = m,, starts to lose its parity and
tends to get a tearing parity. A cascade directly from the
large tearing scale to the small scales becomes dominant.
Indeed, the nonlinear properties of Eqgs. (1)—(3) show that
the mutual nonlinear interaction of large scale tearing
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FIG. 2 (color online). A’ = —0.45. Time evolution of the
kinetic energy of the modes: (a) m =0, m =1 (b) m = my,
m=my + 1

modes T, can drive only tearing parity small-scale fluctu-
ations T: {T\s, T\s} — T. In fact, an accurate analysis of
the energy transfer processes shows that the tearing parity
is transmitted to the small scales by a beating of the mode
m = 1 with the other modes (m = 2, m = 3,...) mainly
through the Maxwell stress. This mechanism changes the
nature of the turbulence and together with the Ohmic
dissipation balances the pumping of the small-scales
energy by the magnetic island.

The snapshots of the electrostatic potential ¢ and
the magnetic flux ¢ during the final nonlinear regime at
t = 56007, are presented in Fig. 3. They reveal that large
scale tearing parity modes dominate and a magnetic island
is present. The nonlinear structure of the observed mode in
Fig. 3 is seen to be strongly affected by the presence of
the small scales and is linked to their radial localization
in the vicinity of the resonant surface of the energy source.
The pattern of the electrostatic equipotential contours sur-
rounding the magnetic island display a dipolar structure
instead of the quadrupolar structure usually observed in
the absence of the interchange turbulence. The correspond-
ing velocity flow is therefore one that is going in and out in
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FIG. 3 (color online). A’ = —0.45. Snapshots of the electro-
static potential ¢ and the magnetic flux ¢ at r+ = 56007, during
the fully nonlinear regime.

the vicinity of the x point. A qualitative understanding of
this flow pattern can be obtained from an analysis of the
energy transfer processes [12] which shows that the main
nonlinear energy transfers from small scales to large scales
are driven through the advection of the pressure by the flow
in Eq. (3). Thus the nonlinear interaction of the small-
scales interchange modes through the pressure advection
is the energy source for the growth and the saturation of the
island. The system therefore needs to adopt an appropriate
structure to evacuate this energy and in fact the dipolar
structure enhances the dissipation of the energy through
Joule effect along the separatrices [14]. The effect of
interchange small scales on the saturated island size is
also an important question. For A’ <0, a Rutherford
analysis [1] that includes the curvature contribution in
Eq. (1) shows the island saturation size to scale as: wg, =
C/(¢*A") where C = —6.17k,vy. Our numerical results
show that in the fully nonlinear regime the saturated island
size is nearly independent of A’. Such a behavior can be
attributed to the fact that p # p(i/) and that the island is
generated by small-scale turbulence properties and not
by equilibrium parameters. The saturated island size is
in fact observed (see Fig. 4) to be linearly dependent on
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FIG. 4 (color online). Control of the saturated island size
by the turbulence level (for different negative values of A’ =
{=0.15, —0.29, —0.33, —0.37, —0.41, —0.43, —0.45}).

the anomalous diffusion coefficient D, = v,, / m3—a
measure of the turbulence level obtained from mixing
length arguments [15].

For the case of an unstable tearing mode (A’ > 0), we
find (see Fig. 5) that the saturated island size scales as
~|2y.|7/4. This is in agreement with the earlier theoreti-
cal prediction made in [4], for the case of an unstable
tearing mode accelerated by the presence of drift wave
turbulence, if we note that y, ~ 2y,.

To summarize, we have studied the effect of small-scale
interchange turbulence on a marginally stable or unstable
tearing mode. The presence of the interchange turbulence
has a major influence on the excitation and evolution
mechanisms of a magnetic island. As soon as the growth
of the interchange modes is fast enough (i.e., 2y, > 7v,), a
magnetic island is formed at a large scale thanks to a
nonlinear beating of the fastest growing interchange small
scales even when the tearing mode is stable (A’ < 0). The
nature of the nonlinear large scale flow patterns outside
the island is also affected by the presence of the inter-
change turbulence, as evidenced by the dipolar structure of
the electrostatic equipotential contours. The saturated seed
island size is controlled by the power injected in the system
through the interchange instability. Such an excitation and
control mechanism can have important physical applica-
tions in laboratory and astrophysical contexts. For ex-
ample, in long pulsed or steady state tokamaks, such as
ITER, it is well known that the plasma pressure is ulti-
mately limited by the onset of a subcritical (nonlinear)
variety of tearing mode—the so-called neoclassical tearing
mode (NTM) [16]. Being a subcritical instability, the ex-
citation of an NTM needs a seed magnetic island to exist in
the plasma and the origin of such a trigger is still an open
problem. Our simulation results could prove useful in an
experimental investigation of a possible such mechanism
for seed island generation in a tokamak. Likewise the
turbulence induced novel dipole flow patterns around the
island may constitute distinct experimental signatures to
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FIG. 5 (color online). Effect of interchange instability on the
island size in the marginally unstable tearing mode case (for
different positive values of A’ = {0.01, 0.40, 0.76, 1.16, }).
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look for in multiscale interaction processes and may
provide useful clues for understanding energy transfer
mechanisms in such a scenario.
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