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A two-state oscillator in a viscous liquid is composed of a micron-scale particle whose intrinsic
dynamics is defined by linear potentials that undergo configuration-coupled transitions and is externally
driven by a piecewise constant periodic force of varying amplitude and frequency. This elementary
example of ‘““active matter” has the minimal elements that allow us to study synchronization in the
presence of thermal fluctuations. Experiments reveal the presence of synchronized states (and Arnol’d
tongues), which we explain using analytical and numerical calculations. The system maintains synchro-
nization by adjusting the phase between the bead and the clock. We discuss the relevance of this model to
synchronization in real-world systems, including the role of thermal noise.
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The coordinated motion of groups of two or more eu-
karyotic cilia or flagella is relevant for the role played in a
wide range of biological systems, from propulsion of algae
to fluid transport in the respiratory tract, or symmetry
breaking in embryos [1]. Recent evidence from quantita-
tive experiments supports the long-standing hypothesis [2]
that hydrodynamic interactions are key in these synchro-
nization phenomena [3]. For example, a recent study [4]
found consistency between the synchronized behavior of
the two flagella in the Chlamydomonas algae and a generic
model of two coupled noisy phase oscillators with a cou-
pling strength consistent with hydrodynamic interactions.
However, the mechanochemical aspects of ciliary synchro-
nization are still largely unknown.

Cilia synchronization involves both how the internal
degrees of freedom are coupled to the external perturba-
tions arising from the other active elements, and also the
effects of thermal fluctuations. Thermal noise is relevant
at the length scales and typical coupling forces involved
[4,5]. Despite a few existing computational studies [4,6,7],
the role of noise in these systems remains largely to be
addressed, and is one of our focuses here.

In order to attack the problem of the internal drive, a
number of minimal (deterministic) physical models with a
reduced number of degrees of freedom have been devel-
oped [6—13]. These models fall into two main classes. The
first class is based on rotating objects, with continuous
close orbits. A second class of models [7,8,12] is not based
on rotors, but rather the oscillator is a hydrodynamic bead
that can be subject to two one-dimensional force potentials,
which switch when a particular limit configuration is
reached (a “‘geometric switch”). This system has the ad-
vantage of being experimentally feasible to study [7].

Here, in order to focus on the role of the geometric
switch mechanics in synchronization, we further simplify
the setting and address the response of a single two-state
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oscillator with linear potential to an external periodic
force. This allows a deeper quantitative understanding of
the synchronization properties and the role of noise in the
experiment. Our results have relevance for the wider field
of synchronizing systems, where few controlled experi-
ments exist.

In the experiment, a time-shared optical laser trap
creates a potential energy landscape which is linear in
one direction. This allows us to apply a constant force F
to an overdamped particle. In the absence of noise a
bead of radius R would be driven at a constant velocity
v=F/y, with y=6w7nR and 7 the viscosity. The
oscillation cycle is built from piecewise-constant slopes
[Fig. 1(a)]. The main driving force F, is applied to the
particle. At the geometric boundary, this force is switched
to its opposite, so that the particle is pushed the opposite
way. The internal drive state is represented by a discrete
variable o, = =1. On top of this driven motion, in
which the switch of potential is determined at the first-
passage condition of the particle, we superpose an exter-
nal “clock” signal, the period of which is set externally.
The clock is realized itself as a time-variable tilt in the
linear potential constructed by time-shared traps. It ap-
plies on the bead a weak force F,. that is also constant,
and either strengthens or weakens the basic drive, depend-
ing on the clock state, which can be parameterized by a
discrete variable o, = *=1. Therefore, at any time, the
particle feels a force o,F; + o.F,., with the switches
of o, and o, determined according to the geometric
condition and the clock ticks. Experimentally, the total
force is controlled by a computer that analyzes the
position of the bead to get o, and uses its internal clock
to get o.. Experiments were performed at room tempera-
ture (296 K) in water-glycerol solutions of viscosity
2.2 X 1073 Pa-s, with spherical silica beads (Bangs
Laboratories) of R = 1.74 £ 0.15 pm.
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FIG. 1 (color online). A colloidal bead is driven with a combi-
nation of a fixed-period piecewise-constant force (the clock)
and a linear potential with configuration-coupled switching.
(a) Scheme of the experiment. The blue [dark gray] arrows
represent the internal potential and the green [medium gray]
arrows the clock. Both are realized with time-shared optical
tweezers (red shades). Blue dashed lines are the switching
positions. (b) Mechanical analogy with an overdamped
ferromagnetic bead falling in an infinite set of slides and
subject to a piecewise constant oscillating magnetic field
gradient. (c) Oscillations from one experimental track (black).

Experimental parameters are a = 4.66 um, v = 3.91 um - s !,

€e=05T,=T;=238s.

The geometric switch condition, which sets the ampli-
tude of oscillations to a, is analogous to a bead driven by
gravity and falling through a system of tilted linear slides,
in a high-viscosity fluid [Fig. 1(b)]. In this analogy, the
external clock provides a modulating force in the right or
left directions. The equation of motion is

x=v[oyt) + ea. ()] + (1), (1)

where ev = F./y and ¢ is thermal (Gaussian, white)
noise.

Let us consider first a clock with a period of T, = 2a/v;
thus, it is equal to the natural period of the oscillator 7.
The experimental trajectories of the colloidal particle
position show synchronization with the clock state as a
function of time [Fig. 1(c)]. The synchronized state is such
that the configurational switches occur at midpoints be-
tween two clock switches. The existence of this synchro-
nized state can be easily understood considering the system
in absence of noise. Supposing we start from the position r
immediately after a clock switch [Fig. 1(a)], and the clock
is coherent with the internal state (o, = o; = 1). The time
to the first geometric switch will be t; = (@ — r)/v(1 + €).
Subsequently, o, = —1, and the clock will contrast the
internal state for a time ¢, = T,/2 — t,, during which the
bead will reach the position ¥ = A + Br, where A = kae,
and B = k, with k = (1 — €)/(1 + €). The remaining
half of the cycle will follow an identical dynamics by
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FIG. 2 (color online). Comparison of experiments, simula-
tions, and theory for the mean delay ¢, between a geometric
switch and a clock switch for 7, = T,;. Experiments (O, A
and *) and simulations including an adjustment for the bead size
and delays in trap switches (X) agree and simulations without
any correction (+) fit perfectly our theoretical formula for the
fixed point (solid line). The dependence of #; with three param-
eters has been explored: (a) the amplitude a, (b) the mean velocity
v and (c) the strength of the perturbation €. The theoretical
dependence corresponds to a constant phase equal to 1/4. While
one parameter is varying, the others are fixed to the following
values: a = 4.66 um, v = 3.91 um-s ! and e = 0.1.

symmetry. The fixed point rg, = (1 — €)a/2 follows im-
mediately. This fixed point indicates the position where the
particle will be found after a clock switch. It can be
substituted to r in the above equations, to obtain the four
time differences #; between consecutive clock switches and
geometric switches. These are equal to T./4. In other
words, the system always puts itself at a phase difference
(¢1), = (t1)5p/ T, of 1/4 between oscillator and clock.

The experimental results agree well with these predic-
tions (Fig. 2). The small (5%—10%) deviations can be
understood as by-products firstly of the finite image-
analysis time and secondly of the uncertainty in the bead
radius used in the experiment. First, the rate at which
images are analyzed is not negligible (frame rate is
100 fps). Then, a further delay is added and represents
the time between an image capture and the successive
implementation of the trap position switch. In total, a
feedback delay of 25 ms in the simulations fits with our
experiments. Second, since calibration of the optical land-
scape is a lengthy process of refining the intensity of
62 traps, the experiments were of necessity performed on
different beads, and there is a small variation in bead size
between the experiment and the calibration, which we
estimated by measuring its velocity. The correction is
then included in the simulations as a modified Stokes
drag. Both corrections have been included in our Ermak-
McCammon algorithm simulations [7,14], giving excellent
agreement with data of Fig. 2.

In the presence of thermal noise, each geometric switch
time needs to be treated as a random variable, correspond-
ing to the first-passage time between the previous clock
switch and the geometric switch. This is a complex
situation where uncertainties in subsequent switching
times propagate between different subportions of a cycle.
However a simple argument is sufficient to capture the
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salient features of the fluctuations. Supposing that, for a
half-cycle of index i, £, (i) = ()5, + q(i),i.e.,itis a sum of
a deterministic value and some fluctuations, one obtains
the effective equation 6g = g(i + 1) — g(i) = —24q(i)e/
(1 + €) + x(i), where x(i) is arandom variable accounting
for the effects of noise. y can be estimated by summing
two kinds of contributions. The first comes from the
diffusion from the geometric switch point to the clock
switch point, giving a variance V| =~2D(T,/2 —{t;))/
[v2(1 + €)?], with D the diffusion coefficient. The second
contribution comes from the trajectory between the clock
switch and the subsequent geometric switch. It can be
estimated as the difference between the first-passage time
of a particle under drift v(1 + €) (with the initial condition
corresponding to the mean position at the clock switch at
distance x from the geometric switch) and the mean of the
same first-passage time. This first-passage time is known to
follow an inverse Gaussian distribution [15] which can be
approximated by a Gaussian with variance V, = 2xD/
[v3(1 + €)*]=2D(t,)/[v*(1 + €)?]. In this case, the
evolution of 6¢ can be approximated as a simple continu-
ous Langevin equation. Since over a half-cycle var(y) =
Vi + V,, the fluctuations for the switching time are esti-
mated by (¢>) = DT./[4€v*(1 + €)]. A better estimate of
the continuum limit for 8¢ (presented in the Supplemental
Material [16]) leads to the refined solution {g*) = DT,/
(4€v?) or, equivalently, std(¢,) = std(t,/T,) = +/£/(16¢),
where std denotes the standard deviation and & = 2D /(av)
is a nondimensional measure of noise strength. This
expression for the fluctuations around the synchronized
state describes very well both experiments and simulations
(Fig. 3).

Next, we analyze the consequences of a clock period
that does not match the natural oscillation time of
the oscillator, but is longer or shorter, T, = 2a/v + 6.
Repeating the calculation sketched above, we see that the
fixed point position rg, is shifted by the quantity (1 — €?)
S6v/(4e). In terms of switching times, this behavior is
translated in the synchronized ‘“‘phase difference”

bW 10Dy

T 4 €

c

where 7 = T,;/T,. measures the mismatch between oscil-
lator and drive. This formula assumes that the sequence of
geometric and clock switches is as shown in Fig. 1. It is
therefore only valid for 7 € [1 — €, 1 + €]. In other words,
when changing the clock period, the system adapts its
phase in the interval [0, 1/2] in order to remain synchro-
nized. When noise and detuning are present at the same
time, the argument presented above can be repeated
step-by-step with no further complications, leading to the
expression

std (¢) = vé7/(16¢). 3
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FIG. 3 (color online). Increasing noise ¢ leads to higher fluc-
tuations of the delay (phase) between a geometric switch and a
clock switch. (a), (b), and (c) Theoretical predictions at 296 K
(line) fit with both experiments (O, A, *) and simulations
with (X) or without (+) experimental corrections. Parameters
are the same as in Fig. 1. (d) As shown in our formula for the
phase ¢, represented by the solid line, the amplitude a and
the mean velocity v can be merged in the strength parameter
& =2D/(av). Error bars are the standard deviation of four
different data sets.

Figure 4(a) presents experimental data showing phase
slips emerging with detuning, and Fig. 4(b) explores nu-
merically the dependence on 7 of the phase difference
accumulated in each cycle. The plateaus in Fig. 4(b)
correspond to synchronized states [17], where the accu-
mulated phase difference locks. The plateau at zero,
around 7 =1, is the basic synchronized state and other

Ay / cycle

Cycle index it

FIG. 4 (color online). Synchronization in the presence of
mismatch in the natural frequencies of oscillator and clock.
(a) shows how the experimental accumulated phase in time ¢
depends on the detuning (solid lines). 1/7 = 1.43 (blue [dark
gray]), 1.68 (green [light gray]) and 1.75 (red [medium gray]).
For high detuning, phase slips occur determining phase
difference accumulation. Dashed lines are linear fits, the
gradient of which are the phase difference accumulated in
each cycle. Extensive simulations in (b) show plateaus in the
phase accumulation, at integer frequency ratios between
oscillator and clock (integer ratios are highlighted by dashed
lines). T=296K, a=4.66 um, v=391 um-s~! and
e =0.5.
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FIG. 5 (color online). The synchronization plateau width is
affected by both noise level (a) (simulations with & = 2.09 X
1077, 6.20 X 1073, 2.09 X 1072, 0.209 from green [light gray]
to red [medium gray], and € = 0.5) and coupling strength € (b)
[simulations as lines, and experiments (O) at 296 K for pertur-
bations € = 0.2 (magenta [medium gray]) and 0.5 (green [light
gray])]. @ = 4.66 um and v = 3.91 um - s~ !. Note in (a) that
for T =296 K (i.e., &£ = 6.20 X 1073), the synchronization is
lost for 1/7 = 1.7, in agreement with Fig. 4(a). (c) Phase dia-
gram representing the lower (red [medium gray]) and upper
(blue [dark gray]) plateau boundaries depending on the noise
& = 2D/(av). Three plateaus are found in the 1/7 € [0.1, 5]
range. Simulations (+), experiments (O), and theory (lines).
The regions identify synchronized (S) and nonsynchronized
states (NS).

synchronized states exist at particular integer ratios (iden-
tical to the Arnol’d tongues of nonlinear oscillators). The
synchronization plateaus are affected by both noise level
and detuning strength [Figs. 5(a) and 5(b)]. The results
above can be collected as a phase diagram as a function of
7 and the noise strength £, for a given modulation strength
€ [Fig. 5(c)]. The values that delimit the synchronization
region for the locked state with equal frequency can be
estimated analytically using the expressions derived above
for the fixed point of ¢ and its variability. As a criterion
for stability we have taken that the synchronization phase
difference fixed point ¢, should be placed at least 2
standard deviations away from the boundaries of 0 and
1/2 set by the positions of the geometric switch [18]. This
gives the thresholds observed in Fig. 5(c), in very good
agreement with experiment and simulations.

In conclusion, the two-state geometric-switch oscillator
analyzed here exhibits many features typical of a noisy
nonlinear oscillator [17], similarly to rotatorlike models for
cilia [9,10]. This is by itself remarkable, as the definition of
its dynamics (with a discontinuous velocity) puts it a priori
in a peculiar class of systems. As we have shown, its
synchronization dynamics and the role of thermal noise

as measured in experiments can be understood by simple
quantitative arguments.

Considerations can be made on the noise threshold
where synchronization is lost. At a given detuning level
7, this is set by the external perturbation € and the variable
& =2D/av ~ kgT[Wysore» Where Wy = yva is the
work performed by the rower on the fluid during one
stroke. For synchronization to be observed, the ratio /€
should not exceed a critical value of order 1. This sets a
minimum scale for the size of the oscillator and its rowing
amplitude. Plugging in realistic numbers [5], we estimate
that the condition is always satisfied for flagella and cilia
(£=10"% to 1077, €=~ 10""). On the other hand, this
might not always be the case for smaller systems. As an
example, we estimate that & could be order 102 for
stereocilia [19], which might put them near the critical
limit. Indeed, it is observed that different bundles of stereo-
cilia do not synchronize. While realistic situations are
likely to involve more complex external drive and collec-
tive behavior, the simple system studied here highlights
conditions and limits that are likely to apply to a range of
systems including future artificial swimmers or synchro-
nized micromotors.
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