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The measurements of the Sherman function in elastic electron-cadmium scattering by Bartsch et al.

[J. Phys. B 25, 1511 (1992)] have been in serious disagreement with scattering theories for nearly two

decades. The recently developed relativistic convergent close-coupling method is applied to the problem

and found to be in excellent agreement with experiment over the complete energy range measured. The

unusually rapid variation in the spin asymmetry parameter in the vicinity of 4 eV projectile energy is now

explained in terms of unitarity of the close-coupling formalism.
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Understanding the role of spin in electron-atom interac-
tions is a key component to progress in exciting research
areas such as spintronics [1,2] and quantum information [3].
In addition, electron spin polarization measurements for
elastic scattering are emerging as a tool to study spin entan-
glement [4,5]. Consequently, a quantitative understanding of
spin-related phenomena will be of considerable benefit.

In this Letter, we report on a long-standing, and striking,
discrepancy between theory and experiment for the spin
asymmetry parameter (Sherman function) in the elastic
scattering of electrons from cadmium (Z ¼ 48) atoms.
We resolve the discrepancy by utilizing the recently devel-
oped fully relativistic convergent close-coupling (RCCC)
scattering theory, which is based on the Dirac equation and
accounts for spin polarization effects in a completely
ab initio manner. To indicate the extent of the discrepan-
cies between experiment [6] and previous theories [7,8],
Szmytkowski and Sienkiewicz [8] have highlighted:
‘‘. . .experiment and theory curves often differ significantly
in magnitudes, locations of extrema, and sometimes even
in shapes.’’

Spin polarization effects in electron scattering from atoms
can be due to electron exchange, spin-orbit interactions, or
their interference [9–14]. For the case of elastic electron
scattering from a spin zero target such as the cadmium
ground state, the spin polarization effects arise solely due
to the spin-orbit interactions [15]. The exchange effects,
while important in determining the magnitude of the cross
section at low energies, do not give rise explicitly to any spin
polarization in the scattering process. Conversely, even for
low-energy electrons incident on a heavy target, the spin-
orbit interaction can influence spin polarization effects in
scattering because the electrons will accelerate significantly
on approaching close to the nucleus. Thus the study of spin
polarization effects in electron-cadmium scattering provides
a sensitive test of the relativistic effects.

The RCCC method involves solving a set of relativistic
Lippmann-Schwinger equations derived from the Dirac
equation. Therefore the spin-orbit interaction is included

ab initio in a consistent way between all electrons in the
e-Cd collision system. Comprehensive details of the
RCCC method for quasi-one- and -two-electron targets
have recently been given [16]. RCCC results for scattering
on quasi-two-electron targets such as Hg [17] and Yb [18]
demonstrate that one advantage of the RCCCmethod is the
ability to take into account coupling to the target contin-
uum states. A very brief overview of the application of the
RCCC method to the calculation of electron-cadmium spin
polarization effects is as follows.
The cadmium atom is modeled as two active valence

electrons above a frozen ½Kr�4d10 Dirac-Fock core. The
Dirac Hamiltonian for the active electrons above the
½Kr�4d10 core is diagonalized by using a configuration inter-
action expansion based on a Dirac L-spinor basis [19]. The
generated target states are then used to expand the total wave
function of the electron-cadmium scattering system and for-
mulate a set of relativistic Lippmann-Schwinger equations
for the T matrix elements. In this latter step, the relativistic
Lippmann-Schwinger equations for the T matrix elements
have the following partial wave form:

T�J
fi ðkf�f; ki�iÞ ¼ V�J
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X
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X
�

ZX
dk

� V�J
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E� �Nn � �k0 þ i0
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The notation in Eq. (1), the matrix elements, and the method
of solution using a hybrid OpenMP-MPI [20] parallelization
suitable for high performance supercomputing architectures
is given in Ref. [16]. Our target model consists of 55 bound
states, and we found that adding extra continuum states in the
scattering calculations did not change the SA parameter in the
energy range considered. Therefore, the RCCC results pre-
sented are those of the 55-state calculation. Further details
of the target structure and scattering calculation will be
described elsewhere.
The T matrix elements obtained from the solution of

Eq. (1) are used to determine the scattering amplitudes
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[16], which in turn are used to calculate the spin asymme-
try parameter SA. For scattering of unpolarized spin 1=2
electrons on an unpolarized target, this is given by
Scott et al. [21]:

SA¼ �2
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where Imf g denotes the imaginary part and where the cross
section �u is

�u ¼ 1

2ð2J0 þ 1Þ
X

M1M0m1m0

jfðM1m1;M0m0Þj2: (3)

The scattering amplitude fðM1m1;M0m0Þ describes the
transition from a target state with total angular momentum
J0 and spin projection M0 to a target state with J1 and M1.
The initial and final spin projections of the scattered

electron are m0 and m1, respectively. For elastic scattering
of unpolarized electrons on an unpolarized spin zero target,
the SA parameter is equivalent to the Sherman function
[22]. Note that the nonrelativistic CCC method has a zero
spin-flip amplitude [fð0 1

2 ; 0� 1
2Þ ¼ 0] due to the absence

of spin-orbit coupling in the formalism, and therefore
Eq. (2) yields identically zero for SA. The review article
by Gay [12] gives a lucid explanation of the physical
meaning of the spin asymmetry function SA:

Iðþ�Þ � Ið��Þ
Iðþ�Þ þ Ið��Þ ¼ SAPe; (4)

where Ið�Þ is the scattering intensity at a given angle, and
the electron polarization specified perpendicular to the
reaction plane is

Pe ¼ N" � N#
N" þ N#

; (5)
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FIG. 1 (color online). Spin asymmetry parameter SA at a range of energies and angles for elastic electron scattering on cadmium.
Measurements of Bartsch et al. [6] are presented. RCCC calculations are described in the text. Relativistic polarized orbital
calculations of McEachran and Stauffer [7] and Szmytkowski and Sienkiewicz [8] are denoted by RPOa and RPOb, respectively.

PRL 107, 093202 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

26 AUGUST 2011

093202-2



with N"ð#Þ specifying the number of electrons in the scat-

tered beam with spin up (down). From the measured
number of electrons, Iðþ�Þ and Ið��Þ, scattered through
the angle � to the left and right of the nucleus, respectively,
the spin asymmetry SA can be calculated.

The accuracy of the RCCC method in the calculation of
the SA parameter is illustrated in Fig. 1. Here, the spin
asymmetry parameter is calculated across a wide range of
energies and angles and compared with the measurements
of Bartsch et al. [6] and the previous relativistic polarized
orbital theories of McEachran and Stauffer [7] and
Szmytkowski and Sienkiewicz [8]. The detector has an
angular resolution of 3.5�, and this is incorporated by
convolution of the RCCC results. Note in Fig. 1 that there
is a rapid variation in the measurements of the spin asym-
metry parameter in the vicinity of 3.9–4.0 eV. This rapid
variation of the Sherman function is a signature of the
elastic channel coupling to the ð5s5pÞ3P0;1;2 states which

begin to open in this energy region; see Table I, where the
lowest energy states generated in the RCCC method are
compared with the experimental values. The completeness
of the underlying Dirac L-spinor basis [19] generates a
sufficiently accurate set of states that span the Hilbert space
of the target. The unitarity of the close-coupling formalism
accounts for the influence of excited states on the elastic
channel spin asymmetry [24]. There is a significant change
in the shape, magnitude, and sign of the experimental
results, and these changes are reproduced by the RCCC
calculations but not by previous theories. It is interesting to
note that even well away from this region at the largest
incident projectile energy of 9.0 eV the measurements and
RCCC results are in excellent agreement and have a large
positive sign for SA in the vicinity of 90�, whereas both the
relativistic polarized orbital theories disagree with the
measurements and predict a negative sign. Similarly, at
the smallest energy of 0.3 eV, there is excellent agreement
between the measurements and the RCCC results; how-
ever, the relativistic polarized orbital calculations of
McEachran and Stauffer [7] and Szmytkowski and
Sienkiewicz [8] have significant differences in the spin
asymmetry shape and location of extrema. We found that
the RCCC results for the spin asymmetry SA are extremely
stable against variation in the number of states used in the
calculation and also against variation in the internal pa-
rameters used in obtaining the target structure. We estimate

the uncertainty in the calculation of SA to be within 5% at
most scattering angles.
In Fig. 2, we present the results of RCCC calculations for

the spin asymmetry parameter SA as a function of incident
projectile energy. The detector is placed at � ¼ 110�, and
its angular resolution of 3.5� is accounted for by convolu-
tion of the RCCC results. The energy spread of the electron
beam is between 0.13 and 0.15 eV (FWHM). The presence
of the rapid variation in the spin asymmetry parameter is
illustrated in a conspicuous manner in both the measure-
ments and the RCCC calculations, which are in excellent
agreement with each other. Once again, the unitarity of the
RCCC method accounts for the elastic channel coupling to
the ð5s5pÞ3P0;1;2 excited states, and this produces the rapid

variation in the calculated spin asymmetry parameter in the
region between 3.8 and 4.2 eV.
We conclude by emphasizing that an accurate treatment

of spin-orbit interaction requires a theory that incorporates
the relativistic spin-orbit term in a consistent manner for
the target and projectile electrons. Furthermore, an account
of the rapid variation in the behavior in the Sherman
function requires a unitary theory. The excellent compari-
son with experiment presented here indicates that the

TABLE I. RCCC energy levels for Cd compared with experimental levels listed by the NIST
Atomic Spectra Database [23].

Configuration Term J Parity RCCC (eV) Experiment (eV)

5s2 1S0 0.0 1 0.000 0.000

5s5p 3Po
0 0.0 �1 3.748 3.734

5s5p 3Po
1 1.0 �1 3.826 3.801

5s5p 3Po
2 2.0 �1 4.003 3.946

Ionization limit 8.996 8.994
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FIG. 2 (color online). Spin asymmetry parameter SA as a
function of energy for elastic electron scattering on cadmium.
The detector is located at � ¼ 110�. Measurements of Bartsch
et al. [6] are compared with the results of the RCCC calculations
described in the text.
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RCCC method is an ideal tool for quantitative studies of
spin-related phenomena.
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