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We show that optical spectroscopy of Rydberg states can provide accurate in situ thermometry at room

temperature. Transitions from a metastable state to Rydberg states with principal quantum numbers of

25–30 have 200 times larger fractional frequency sensitivities to blackbody radiation than the strontium

clock transition. We demonstrate that magic-wavelength lattices exist for both strontium and ytterbium

transitions between the metastable and Rydberg states. Frequency measurements of Rydberg transitions

with 10�16 accuracy provide 10 mK resolution and yield a blackbody uncertainty for the clock transition

of 10�18.
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Blackbody radiation (BBR) at room temperature limits
the accuracy of optical and microwave atomic clocks. The
root-mean-square electric field of BBR is 832 V=m at
300 K and this produces problematic Stark shifts of atomic
levels. Two currently promising candidates for future
optical-frequency lattice clocks are Sr and Yb [1–7].
For Sr clocks, the fractional BBR frequency shift is
��=� ¼ 5:49� 10�15ðT=300 KÞ4 [8], giving a sensitivity
of 7:3� 10�17 K�1. Thus, achieving an accuracy goal of
10�18 [4] requires a temperature accuracy of 10 mK near
300 K. In current Cs clocks, the best temperature accura-
cies are �0:2 K, averaged over the relevant clock volume
[9]. Cs and Rb microwave clocks have a comparable BBR
sensitivity to Sr, as does Yb; all are within factors of 3 [10].
The BBR shift can be dramatically reduced by cooling
clocks with liquid nitrogen, to near 77 K [4,11]. This
reduces the BBR shift by a factor of 200, but still, the
required temperature uncertainty of �0:6 K for 10�18

clock accuracy may be difficult [4]. For some applications,
especially space clocks, cryogens may be prohibitive.
One alternative being pursued is to use clock transitions
that are fortuitously much less sensitive to BBR, such as
the Alþ ion, and the Cd, Hg, Mg, and Zn clock transitions
[10,12,13]. Here we show how to use transitions to
Rydberg states for accurate in situ thermometry
[Fig. 1(a)]. Rydberg states have large BBR Stark shifts,
200 times greater sensitivity to BBR than the Sr clock
states. We also describe a magic-wavelength lattice for
Rydberg transitions for which the dipole approxima-
tion is not valid. Rydberg lattices may be important for a
variety of applications, including quantum information
and computation [14].

Optical lattice clocks have the potential to achieve
unprecedented frequency stability. Optical lattices can
naturally trap up to 106 atoms, giving a high signal-to-
noise ratio on an optical-frequency transition of 1015 Hz
with a sub-Hz width. A lattice at the magic wavelength [1]

does not perturb the frequency of the clock transition and
suppresses important systematic errors such as Doppler
shifts. Here we show that applying this high-resolution
spectroscopic capability to Rydberg atoms in a magic-
wavelength lattice can provide accurate thermometry.
Highly excited Rydberg states have a BBR energy
shift which asymptotes to that of a free electron,
�ðkBTÞ2=3c3 � 2:4 kHz at 300 K [15]. It corresponds to
a temperature sensitivity of 16 Hz=K, and therefore a
spectroscopic accuracy of 0.16 Hz can yield an in situ
temperature uncertainty of �10 mK.
The BBR Stark shift is given by the dipole strength of

the nearby transitions and their energies. All atoms have

a)

b)

FIG. 1 (color online). (a) Rydberg atoms trapped in an optical
lattice can be sensitive thermometers. (b) Energy levels for Sr.
Transitions from the metastable 3P0 state to high Rydberg states

(dashed line) have a frequency sensitivity of 16 Hz=K, which
can enable a temperature accuracy of �10 mK. To achieve this
accuracy using transitions between Rydberg levels (inset, solid
line), only a modest fractional frequency accuracy of 10�13 is
required, but, for Sr, the transition linewidths would require lines
to be split by more than 106. For l � 4 states, transitions between
3P0 and

3D1 states have the largest sensitivity, � 1 Hz=K; their
precise energies are not known.
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the same Rydberg spectrum for highly excited states
[n > 30 in Fig. 1(b)]. Since the transition energies are
much less than the mean BBR photon energy, all high
Rydberg states have the same energy shift so the frequen-
cies of transitions between them have a negligible sensi-
tivity to BBR. An exception is transitions between Rydberg
states and excited inner shell states or multiple electron
excitations [16]. However, these states are not Rydberg
states and therefore have short lifetimes that do not provide
a sufficiently precise temperature resolution.

Relatively low-lying Rydberg states, where the energy
of nearby transitions is comparable to the BBR photon
energy, can give a large temperature sensitivity [Fig. 1(b)
inset, solid line] because the energy splittings are slightly
different for different angular momentum. We show that
transitions from relatively low-energy metastable states to
moderately high Rydberg states are better candidates
[Fig. 1(b), dashed line]. Here the sensitivity arises because
low-energy states, with their large energy splittings to all
other states, have much smaller BBR shifts than Rydberg
states. A metastable state requires less energetic photons to
reach the Rydberg state than the ground state, making
the laser technology easier and the metrology of the BBR
temperature more accurate. We next discuss transitions
from the lowest metastable state to high Rydberg states
and later transitions between intermediate Rydberg states.

The ac Stark shift of an atomic state due to
BBR is

�EBBR
n ðTÞ ¼ � 1

4

Z 1

0
E2ð!; TÞ�nð!Þd! (1)

in atomic units, where �nð!Þ is the ac polarizability and
the BBR spectral density is

E 2ð!; TÞ ¼ 8!3

�c3½expð!=kBTÞ � 1� : (2)

The BBR shift can be expressed as a sum over all dipole
allowed transitions by integrating over the BBR spectrum

�EBBR
n ðTÞ ¼ � 2

�c3
ðkBTÞ3
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�
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Here, F ðyÞ is the Farley-Wing function [17] (Fig. 2):

F ðyÞ ¼ �2y
Z 1

0

x3dx

ðx2 � y2Þðex � 1Þ ; (4)

where the integral is the Cauchy principal value. For highly
excited Rydberg states, nearby states give the largest dipole
matrix elements, the energy splittings !n0n go to zero, and
F ! �ð�2=3Þy. Summing over all states gives [17]

�EBBR
n ðTÞ � �

3c3
ðkBTÞ2; (5)

which is 2.4 kHz at 300 K.
We use a single-electron, model-potential method

[18] to calculate the BBR shifts for the lowest angular

momentum states of Sr in Fig. 3. When the principal
quantum number exceeds 25, all states have essentially
the same BBR shifts. D states with n < 9 have negative
BBR shifts because the transitions with the largest dipole
moments have energies of order kBT.
For the ground and the first excited states, the transition

energies are much greater than kBT. To lowest order,

�EBBR
n ðTÞ � � 2�3�nð0Þ

15c3
ðkBTÞ4; (6)

which scales as T4, instead of T2 as for highly excited
Rydberg states, since all transitions are far detuned. The
difference of the static polarizabilities of the ground and
excited clock states, 5s2 1S0 and 5s5p

1P0, give most of the

sensitivity of the clock’s frequency to BBR. The shifts
are �1:7 and �3:9 Hz, respectively, at 300 K, with sensi-
tivities of �0:011 and 0:04 K�1 [8]. Thus, the BBR shifts

FIG. 2 (color online). The Farley-Wing function [17] is plotted
versus normalized transition frequency y ¼ !n0n=kBT. It gives
the blackbody radiation shift of state n due to n0, Eq. (3).

FIG. 3 (color online). BBR Stark shifts of the (a) triplet and
(b) singlet 5sn‘ Rydberg states of Sr. The shifts asymptote to
2.4 kHz for high principal quantum numbers n.
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of transitions from the ground or lowest metastable state to
Rydberg states are dominated by the Rydberg BBR shifts.

The advantage of probing n > 25 states from a meta-
stable state, as opposed to the ground state, is clear. The Sr
transition wavelengths are shorter than 319 nm for the
metastable state whereas they must be less than 219 nm
for the ground state. Higher n are preferred because they
have longer lifetimes, facilitating precise spectroscopic
resolution, but this is tempered by a larger sensitivity to
interatomic interactions and stray static electric fields. The
Sr 5snd 3D1 states have significantly longer lifetimes than

L � 2 states. The natural linewidth of the 5s25d 3D1 state

is 1 kHz and its BBR broadening [15] is 2.5 kHz. A
temperature accuracy of 10 mK requires the transition
frequency to be known to 5� 10�5 of the linewidth, well
less than the 10�6 line splitting of microwave atomic
clocks [19]. The fractional frequency accuracy must be
1:7� 10�16 to allow 10�18 accuracy of the clock transi-
tion’s BBR shift, giving an accuracy leverage of more
than 100.

The dc Stark shifts of Rydberg levels from stray electric
fields is a systematic error for BBR thermometry that has to
be evaluated experimentally. Asymptotically, the static po-
larizability of Rydberg states scales as n7. The 5snd 3D1

state has a scalar polarizability of �100 Hzm2=V2 for
n ¼ 25 and �440 Hzm2=V2 for n ¼ 30. Thus, by using
more than one transition in this range, both the temperature
and the magnitude of any stray electric fields can be
determined.

Interatomic interactions between highly excited Rydberg
states are large, even useful for Rydberg blockades [14].
For large energy shifts, as in effective blockades, the inter-
actions are R�3 where R is the distance between atoms.
Here, the high requisite precision dictates that the atoms
interact weakly, and therefore the interactions are small
compared to the Rydberg spacings (van der Waals regime)
and the interactions scale as R�6 and n11. This limits the
maximum viable n. For n ¼ 25, the mean spacing must
be 4 �m for a 1 Hz shift, which could be satisfied in a three-
dimensional latticewith unity occupation and a large lattice
spacing. If the lattice volume is ð100 �mÞ3, more than 104

atoms can be trapped. The shot-noise limited signal-to-
noise ratio would be 100, enabling a frequency resolution
of 0.16 Hz in less than 103 measurements of a 3.5 kHz wide
transition.

A magic-wavelength optical lattice is needed for
Rydberg transitions just as it is for the high-accuracy
spectroscopy of the clock transition. A lattice slashes the
systematic errors from photon recoils and Doppler shifts.
However, the size of Rydberg atoms can easily be larger
than the periodicity of optical lattices [20]. Therefore, the
dipole approximation may not be valid and Rydberg atoms
could be untrapped. Here we show that Sr and Yb magic-
wavelength lattices do exist for Rydberg transitions, with n
as large as 40, from the 3P0 metastable states.

We begin with the full interaction potential for the
electromagnetic field,

Vðre; tÞ ¼ A2ðre; tÞ
2c2

� 1

c
ðAðre; tÞ � p̂eÞ; (7)

where p̂e and re are the momentum operator and the
coordinate of the Rydberg electron. The vector potential
of a standing wave is, in the Coulomb gauge,

A ðr; tÞ ¼ � 2cE0

!
ez sin½kmðX0 þ xeÞ� sinð!mtÞ; (8)

where we separate out the nuclear coordinate X0. Breaking
the atom-lattice interaction (7) into two terms is particu-
larly useful for Rydberg states. The dominant contribution
is given by the first term if there is not an accidental
resonance for the lower state. The second term only gives
a correction, smaller by approximately ðn2!mÞ�2 � 1.
Thus, the Stark shift of a Rydberg transition is

�En ¼ E2
0

!2
m

½sin2ðkmX0Þð1� 2hnjsin2ðkmxeÞjniÞ

þ hnjsin2ðkmxeÞjni�: (9)

For the metastable 3P0 state, the dipole approximation is

well satisfied, giving the familiar Stark shift

�E3P
0
¼ �E2

0�3P
0
ð!mÞsin2ðkmX0Þ: (10)

Comparing (9) and (10), we see that the lattice potential for
the nuclear position terms (X0) is the same if

�3P0
ð!mÞ ¼ � 1

!2
m

½1� 2hnjsin2ðkmxeÞjni�: (11)

Thus, the polarizability of the metastable state has to be
negative, �3P

0
ð!mÞ< 0, so the magic wavelength must

be blue detuned from a metastable state dipole resonance.
The atoms are then confined at the intensity minima of
a repulsive lattice.
The matrix element in the right-hand sides of (9) and

(11) can be evaluated analytically in the limit of small
(kman � 1) and large (kman 	 1) Rydberg orbits, of
radius an/n2.
(i) hnjsin2ðkmxeÞjni� 1

3k
2
mhnjr2jni� 5

6k
2
mn

4 (kman�1Þ.
This correction is much less than 1 when � > 1 �m
and n < 40.
(ii) hnjsin2ðkmxeÞjni � 1=2 (kman 	 1). In this limit,

the first term in the square brackets in (9) goes to zero.
The second term is independent of the nuclear position so,
when the Rydberg orbit is much larger than the lattice
wavelength, kman 	 1, the Rydberg atom cannot be
trapped in a lattice. However, if the lattice beams do not
counterpropagate, the lattice spacing can be arbitrarily
large—km may be much less than !m.
Equation (11) gives a smooth dependence of the magic

frequency on n. While the position independent term
can be significant, it is suppressed for large lattice
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spacings. For n ¼ 25 and a 4 �m spacing, this term is
5:6� 10�4E2

0=!
2
m. We note that higher-order multipoles

(magnetic dipole M1 and electric quadrupole E2) [21,22]
give a similar atom-position-independent term in (10) for
the metastable state. These are negligible in comparison
with those for the Rydberg state, which are automatically
included in the form of (7).

For Sr atoms, a range of magic wavelengths exists from
2379 nm (for n ¼ 40) to 2392 nm (for n ¼ 15). Here the
polarizabilities range from 120 to 129 kHz=ðkW=cm2Þ.
Calculations for Yb give magic wavelengths of 1142 nm
(n ¼ 40) to 1209 nm (n ¼ 15), and polarizabilities from
18.8 to 32:8 kHz=ðkW=cm2Þ, for two-photon transitions
to 6snp3P0 states (see Table I). A 3D lattice generally

produces problematic vector and tensor light shifts. One
way to control these is to use three pairs of linearly
polarized ‘‘independent’’ beams that have slightly different
frequencies, which gives an effective linear polarization
throughout the lattice [23].

BBR thermometry can also be performedwith transitions
between Rydberg levels. The energy shifts in Fig. 3(a)
show that there are large differences around n ¼ 10, where
the energy splittings are comparable to kBT at 300 K.
However, the transition linewidths in this region are broad,
of order 100 kHz, limiting the resolution. Nonetheless, a
difference in sensitivity, albeit smaller, extends up to high n
and a number of transitions are sensitive. For example, at
n ¼ 40, the BBR shifts and sensitivities for the 3P0 and

3D1

are (2713 Hz, 17:06 Hz=K) and (2415 Hz, 16:14 Hz=K).
The natural linewidths are 8334 and 233 Hz, and the BBR
broadenings are 1.9 kHz. To achieve 10 mK temper-
ature resolution, the line has to be split by a challenging
factor of more than 106. The advantage is that the transition
frequencies are small, less than 60 GHz, and therefore
require an effortless fractional frequency accuracy of only
1� 10�13. Because the linewidth is large, and because
neither state is metastable, optical transitions from the
metastable 3P0 to Rydberg states appear more promising

for Sr.

To summarize, blackbody radiation at room temperature
poses a limit to the accuracy of Sr and Yb optical-frequency
atomic clocks. Transitions from a metastable state to low-
lying Rydberg states, n ¼ 25–30, have fractional frequency
sensitivities to blackbody radiation that are 200 times larger
than the Sr clock transition. In situ measurements of these
Rydberg transition with an accuracy of 10�16 would give
the temperature to�10 mK and enable clock accuracies of
10�18. We show that magic-wavelength lattices exist near
2.3 and 1:2 �m for these Rydberg transitions in Sr and Yb.
Systematic errors such as Stark shifts from patch electric
fields can be evaluated by probing several Rydberg transi-
tions. Interactions between atoms limit the maximum den-
sity to less than 1010 cm�3 for the Rydberg spectroscopy,
which is still high enough to give a sufficient signal-to-noise
ratio.While transitions between two Rydberg levels around
n ¼ 40 could also be used for thermometry, the temper-
ature sensitivity for these would require a highly accurate
splitting of the transition linewidths, better than 106.
Rydberg thermometry may be particularly useful for clock
applications where cryogens are prohibitive, including
optical-frequency space clocks.
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Note added.—We note that another theoretical analysis

of trapping Rydberg states in lattices, to generate atomic
entanglement, has recently appeared [24].
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