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We find self-replicating holes on the surface of a vertically vibrated potato starch suspension. Above

certain acceleration, the finite-amplitude deformation of the surface grows to form a hole that penetrates

the fluid layer. The circular shape of the hole is not stable, and the hole begins to replicate just like the self-

replicating spots in chemical reaction-diffusion systems. At high acceleration, these holes exhibit

spatiotemporal chaos. By assessing the statistical properties in a steady state, we show that fluctuation

in the number of holes can be understood by a master equation.
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Various emergent patterns can be found in natural phe-
nomena when systems are driven out of equilibrium. When
the same pattern is found in completely different systems,
it is natural to think of underlying laws which commonly
govern the different systems. Self-replicating spots remi-
niscent of biological cell replication have been discovered
in an experiment and a model of a chemical reaction-
diffusion system [1,2]. The spots grow until they reach a
critical size and then split into two. As the system is driven
farther out of equilibrium, these spots replicate and anni-
hilate persistently. Although features of self-replication in
reaction-diffusion systems have been studied well theoreti-
cally [3,4], they have only been found in a chemical
reaction system [1], and quantitative characterization is
lacking. We report an observation of self-replicating holes
in a fluid system. Instabilities of a vertically vibrated non-
Newtonian fluid provide a prototype experimental system
that is suitable for elucidating the replication or annihila-
tion process and quantitative characteristics of weak turbu-
lence in self-replicating systems.

There has been growing interest in instabilities and
rheological properties of non-Newtonian fluids, including
surface instabilities induced by vertical vibration [5,6].
Merkt et al. discovered persistent holes in a vertically
vibrated cornstarch suspension or a glass microsphere
suspension [7]; the holes persist despite the hydrodynamic
pressure of the surrounding fluid. Ebata et al. found holes
that expand rather than persist [8]. When a potato starch
suspension was vertically vibrated, the deformation of the
surface also grew to form a hole; however, the dynamics of
these holes changes dramatically. Holes in potato starch
suspension have a typical size of�5 mm, which is similar
to that of a stable hole in a cornstarch suspension.
However, the circular shape of the hole is unstable, and it
begins to replicate similar to self-replicating spots in
reaction-diffusion systems [see Figs. 1(a)–1(d)]. Above
certain acceleration, the holes continuously replicate and
annihilate as they spread out upon the surface of the
suspension. It is known that self-replicating spots in a
Gray-Scott model show spatiotemporal chaos (STC) in a

certain parameter range [9,10]. We find that self-
replicating holes also show spatiotemporal chaos at high
acceleration (Fig. 1(e) and 1(f) [11]). In this Letter, we
report detailed dynamics and statistics of self-replicating
holes. A statistical analysis for defect-mediated turbulence
[12,13] is applied to replicating holes. Statistical properties
of birth and death rates of holes are similar to those in the
Gray-Scott model [10], with minor nonlinear modifications
despite considerable dissimilarity between surface insta-
bility and reaction-diffusion systems.
For the suspension, we used a mixture of potato starch

(Sigma Aldrich) and water [14]. The powder was dried at
50 �C for one week and then stored in a desiccator. Before
the experiment, a small amount of the powder (1 g) was
baked at 105 �C for 2 h. From the decrease in weight, we

FIG. 1. (a)–(d) Time evolution of a self-replicating hole. A
frame is taken every 1.6 s; (e),(f) spatiotemporal chaos of the
holes (see video in [11]); Fig. 1(f) is the image taken 1.5 s after
Fig. 1(e). Dashed arrows mark a hole annihilating by collision
and solid arrows mark a hole replicating. The parameter values
are � ¼ 0:47, f ¼ 100 Hz [(a)–(f)], and � ¼ 161 m=s2

[(a)–(d)], 180 m=s2 [(e),(f)].
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estimated the wetness of the powder (typically, wetness is
9–11 wt%). We varied the mass fraction of the system� ¼
Mp=ðMp þMwÞ from 0.44 to 0.49, where Mp and Mw are

the mass of the powder and water, respectively. A layer
of suspension (initial depth ¼ 4:5 mm) in a cylindrical
glass container (inner diameter ¼ 9 cm) was subjected to
vertical sinusoidal vibration [vertical position zðtÞ ¼
A sinð2�ftÞ] using an electromagnetic vibration system.
The frequency f was varied from 40 to 120 Hz, and
the peak acceleration � ¼ Að2�fÞ2 was varied up to
245 m=s2. The container was sealed to reduce evaporation.
A local perturbation was created by making a small hole in
the flat surface with a stick. Then, we recorded the dynam-
ics of holes with a charge-coupled-device (CCD) camera at
30 frames=s. To eliminate the effect of the wall, we mea-
sured only the holes in the center region (7.4 cm in diame-
ter) of the container. To count the number of holes, the
images were binarized. The background was subtracted
before conversion, and the threshold for binary image
processing was chosen to minimize counting errors.

The surface instability of self-replicating holes shows
subcritical bifurcation, necessitating an initial deformation
of the surface. For all the parameters we examined, holes
were not created spontaneously. Hence, new holes were
created only by initial perturbation or self-replication of
holes. For dispersed particles, we also used glass beads
whose diameters were larger than 50 �m, but we observed
only expanding holes [8]. The mean diameter of the potato
starch was about 30 �m, and a stable hole was found in
<20 �m dispersed particles [7,8].

The cascading process of self-replication is illustrated in
Figs. 1(a)–1(d). The circular shape of a hole is unstable,
and therefore, a circular hole first grows to an ellipsoid
[Figs. 1(a) and 1(b)]. Then, a partition gradually appears
inside the hole and the minor axis of the hole begins to
shrink [Figs. 1(b) and 1(c)]. The suspension around the
hole pours into the partition, and the hole is divided into
two holes [Fig. 1(c)]. The two holes repel each other
and separate, after which they begin to replicate again
[Fig. 1(d)]. Figure 2(a) is the x-y-t plot of the replicating
holes near the critical acceleration, showing the replication
and annihilation of the holes. The hole diameter oscillates
synchronously with the vibration (typically at 100 Hz) [7],
and it also oscillates periodically with a slow cycle (typi-
cally 1.5–4 s). At the end of each slow cycle, the hole tends
to replicate. However, holes sometimes fail to replicate;
they do not replicate or they replicate but one of the new
holes disappears quickly (typically, shorter than 0.5 s). As
the acceleration increases, the oscillation period decreases
and less holes fail to replicate. Therefore, the density of the
holes increases at higher acceleration. The interaction
between holes is repulsive if two holes are very close.
However, the holes attract each other at a mid-distance.
When two holes collide, several processes can be observed:
After collision, the holes may separate [i.e., bounce;

Fig. 2(b)], one of the holes may annihilate [i.e., partial
annihilation; Fig. 2(c)], or both holes may annihilate [i.e.,
pair annihilation; Fig. 2(d)]. Collided holes may also stick
to each other for several seconds after they collide [see
Fig. 2(c) from 5–10 s], but they do not merge. The domi-
nant processes of annihilation are failure of replication and
collision; isolated holes rarely annihilate spontaneously.
Figure 3(a) shows the phase diagram. Above the line in

Fig. 3(a), holes continue to replicate and annihilate, and
more than one hole always exists over 3 min. Below the
line, holes may replicate for several seconds, but all holes
cease to annihilate within 3 min. If the acceleration is
sufficiently high, protrusion sometimes rises from the rim
of the hole, as with the delocalized hole in [7]. When the
acceleration is high enough, replication and annihilation of
holes occur frequently, and eventually balance out.
Therefore, the number of holes n fluctuates around a

FIG. 2 (color online). Spatiotemporal plots of the binary im-
ages of the holes. Parameter values are � ¼ 0:47, f ¼ 100 Hz,
and � ¼ 154 m=s2; (a) an x-y-t plot of the replicating holes;
(b)–(d) collisions of the holes, with projections to the x-t plane;
(b) bounce; (c) partial annihilation; and (d) pair annihilation.

FIG. 3 (color online). (a) Phase diagram of replicating holes.
Above the line, the holes continue to replicate for more than
3 min. (b) Fluctuation of number of holes in steady state; (c) an
x-y-t plot of replicating holes in STC; parameter values are
� ¼ 0:47, f ¼ 100 Hz, and � ¼ 180 m=s2 [(b),(c)].
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mean value in the steady state. In Fig. 3(b), the mean value
hni ¼ 13:2 and standard deviation � ¼ 2:25 show strong
fluctuations. Next, we calculated the spatial autocorrela-
tion function and found that the correlation disappeared at
the mean hole diameter. This indicates that hole positions
are almost incoherent. The fluctuation in n and a short
correlation length imply the existence of STC. The ratio of
variance and mean value �2=hni was introduced to mea-
sure the influence of spatial correlations [13]. In Fig. 3(b),
the value of �2=hni ¼ 0:384 of replicating holes is close to
that of STC in the Gray-Scott model (�2=hni ¼ 0:448,
[10]). We also measured the power spectrum SðfÞ of
nðtÞ. For intermediate frequencies, we found a scaling of
SðfÞ / f�� with � � 1:8–1:9 for various parameter val-
ues. This value is also close to that of STC in the Gray-
Scott model (� � 2, [10]). Figure 3(c) shows the x-y-t plot
of the holes in STC. Comparing with Fig. 2(a), the dynam-
ics of one hole does not change substantially; nonetheless,
many replications, partial annihilations and pair annihila-
tions can be seen. At low acceleration, the dominant pro-
cess of the annihilation is failure of replication. However,
at high acceleration, annihilation caused by collision often
occurs as a result of attractive interaction and high density
of holes. These frequent replications and annihilations
cause STC.

The question is whether the replication and annihilation
rates can be expressed by the total number of holes, i.e.,
whether the mean field picture can be applied to a self-
replicating pattern. To elucidate it, we measured birth and
death rates of the holes by image analysis and classified
them [Fig. 4(a) inset, [15]). Birth events were classified as
self-replication and inflow. Because we measured only
near the center of the container, there was an inflow of
holes from the outer regions of the container. Next, the
death events were classified as annihilation (which in-
cludes failure of replication, spontaneous annihilation

and annihilation by collisions) and outflow of holes to
the outer region. By comparing the current image with
the subsequent image over a short time interval (0.1 s),
we counted the frequency of each event and then averaged
the events over the time series (� 18 000 frames). The
replication rate does not increase proportionally to n but
weakly [Fig. 4(a) inset]. So, as the hole density increases,
the replication rate of one hole decreases. The annihilation
rate is a quadratic function of n [Fig. 4(a) inset], which is in
contrast to the linear function in the STC in the Gray-Scott
model [10]. The quadratic term derives from collisions
[12], but the annihilation rate also has a negative linear
term and a positive constant term. The inflow rate is almost
always larger than the outflow rate because of the wall
effect [Fig. 4(a) inset].
Next, we calculated the birth rate by summing the rep-

lication and inflow rates. The death rate was calculated by
adding the annihilation and outflow rates [Fig. 4(a)]. The
birth rate�þðnÞwas then fitted by a linear function and the
death rate ��ðnÞ by a quadratic function [Fig. 4(a)]:

�þðnÞ ¼ i0 þ i1n (1)

��ðnÞ ¼ d0 þ d1nþ d2n
2: (2)

In Fig. 4(a), these fitting parameters become i0 ¼ 6:73,
i1¼�0:0248, d0 ¼ 3:07, d1¼�0:786, and d2 ¼ 0:0768.
We examined the other parameters and found weak linear
dependence of �þ on n and quadratic dependence of ��
on n. Then, to determine the properties of the hole dynam-
ics, we applied a probabilistic description as the extension
of the model for defect-mediated turbulence [12]. Because
of the short correlation length, a discrete birth-death
Markov stochastic process with transition rates �þ and
�� can be adopted [10].

FIG. 4 (color online). (a) Birth (circle) and death (square) rate of holes as functions of the number of holes. Dashed curves are fitted
using Eqs. (1) and (2). (Inset) Rate of each event; � replication, 4 inflow, h annihilation, � outflow. (b) Probability distribution
function (PDF) of the number of holes. Circle and square symbols are calculated from time series of nðtÞ [see Fig. 3(b)]. Dashed line is
the PDF computed from Eq. (4). (c) Radial distribution function of the hole; square, circle, and cross are gðrÞ, grðrÞ, and gaðrÞ,
respectively. Parameters are � ¼ 0:47, f ¼ 100 Hz, and � ¼ 180 m=s2 [Figs. 4(a) and 4(c)]; � ¼ 0:47, f ¼ 100 Hz, and
� ¼ 180 m=s2 [Fig. 4(b) �]; and � ¼ 0:46, f ¼ 80 Hz, and � ¼ 180 m=s2 [Fig. 4(b) h].
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Pðn; tþ dtÞ ¼ Pðn; tÞf1� ½�þðnÞ þ��ðnÞ�dtg
þ�þðn� 1ÞPðn� 1; tÞdt
þ��ðnþ 1ÞPðnþ 1; tÞdt (3)

In the steady state, the master equation for the probability
distribution function (PDF) of hole number PðnÞ is reduced
to PðnÞ ¼ �þðn� 1ÞPðn� 1Þ=��ðnÞ. Based on Eqs. (1)
and (2), a recursive relation leads to the following PDF:

PðnÞ ¼ Pð0Þ Yj¼n�1

j¼0

i0 þ i1j

d0 þ d1ðjþ 1Þ þ d2ðjþ 1Þ2 ; (4)

where Pð0Þ is the normalization factor.
Figure 4(b) illustrates the PDF PðnÞ that is directly

computed from the time series in Fig. 3(b). As shown in
Fig. 4(b) (dashed line), the value of PðnÞ calculated from
Eq. (4) matches it quite well.

To investigate the spatial structures, a radial distribution
function gðrÞ was computed [Fig. 4(c)], where gðrÞ is
defined as h�ðrÞit=ð2�rdr�Þ; � represents the average
density of holes, and �ðrÞ is the number of holes at
distances from a given hole between r and rþ dr. In
addition, we selected �ðrÞ whose centered hole is either
annihilating or replicating. Next, we computed a radial
distribution function around the annihilating holes gaðrÞ
or replicating holes grðrÞ. gðrÞ has a hard core region and
the position of the first peak r ¼ 0:55 cm corresponds to
the mean diameter of the holes 0.54 cm. Thus, the first peak
represents the situation in which two holes attach to each
other. This indicates that the first peak reflects a replication
of the hole. gaðrÞ also exhibit a very large peak at�0:5 cm.
This indicates that most annihilating holes attach to other
holes. Therefore, the first peak results from a failure of
replication and collision. On the other hand, grðrÞ has a
larger hard core region and no sharp peaks. The larger hard
core region clearly indicates that the hole cannot replicate
if another hole approaches it. This supports the finding that
the replication rate of one hole decreases as the total hole
number increases [Fig. 4(a)]. These three radial distribu-
tion functions collapse when r > 0:9 cm. At this point,
interaction length is estimated at 0.9 cm. Because of the
interaction, the holes tend to form a loose linear structure,
whose typical life span is�5 s. This spatial structure must
affect the replication and annihilation rates. To fully under-
stand the dynamics of the holes in STC, the interaction
between holes will require further study.

Our results show that the statistical properties of self-
replication are quite similar to the STC of reaction-
diffusion systems despite the large dissimilarities between
those and the fluid system presented here. This indicates
that the self-replicating pattern might be one of the uni-
versal scenarios from localized pattern formation to weak
turbulence. Another topic that remains to be addressed is

the mechanism of the replicating hole. As stated in [7],
these holes are only found in dense suspensions; therefore,
the rheology of the dense suspension must deeply connect
with the mechanism of holes. Recently, R. D. Deegan
created a model of stable holes in which hysteresis in the
shear rate response to applied stress was used [16]. We
found that potato starch suspension also exhibits stress
hysteresis. If the parameter values are carefully chosen,
the metastable holes appear in the potato starch suspension.
As the acceleration increases, these meta stable holes begin
to replicate, suggesting that the rheological difference
between the stable hole and replicating hole is not very
large. While it is known that replicating patterns have
hysteresis in local normal velocity to local curvature [4],
it is not clear how a hole could have hysteresis in local
normal velocity. To clarify the relationship between hys-
teresis in shear rate and that in local normal velocity, it will
be necessary to calculate the influence of the hole shape on
applied shear stress. Resolution of this issue should allow a
more complete understanding of the important process of
hole replication.
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