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Mutualism is a major force driving evolution and sustaining ecosystems. Although the importance of

spatial degrees of freedom and number fluctuations is well known, their effects on mutualism are not fully

understood. With range expansions of microbes in mind, we show that, even when mutualism confers a

selective advantage, it persists only in populations with high density and frequent migrations. When these

parameters are reduced, mutualism is generically lost via a directed percolation (DP) process, with a phase

diagram strongly influenced by an exceptional symmetric DP (DP2) transition.
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Cooperation is at the heart of many complex systems
[1,2]. On an organism level, gut bacteria help their hosts
digest cellulose. On an ecosystem level, plants often rely
on fungi to receive important nutrients. Even human soci-
eties are products of cooperation between individuals.
Despite the apparent advantage and pervasiveness of mu-
tualistic interactions, their existence is often difficult to
explain by a naive application of Darwinian natural selec-
tion: Cooperation can succumb to cheating [1] and, as we
show here, to number fluctuations.

To model complex interactions between individuals or
species, Maynard Smith developed evolutionary game the-
ory [2]. The central idea of game theory is that the fitness of
an organism depends on the frequency of encounters with
other organisms in the population. Evolutionary games are
usually analyzed using mean-field-type approximations,
which neglect both spatial correlations and number fluctu-
ations. However, these simplifications are not appropriate
for natural populations living in spatially extended habitats
and can miss important stochastic aspects of population
dynamics. In particular, the interplay of stochasticity and
spatial degrees of freedom leads to spatial demixing of
different species or genotypes in the population [3,4],
which can significantly decrease the probability of mutual-
istic interactions.

Following pioneering work of Nowak and May [5],
several studies have investigated the effects of space on
evolutionary games [6,7] (and references therein) using
simulations on a two-dimensional lattice with a single
nonmotile individual per site. Although these studies un-
derscored the significant effects of spatial structure on
evolutionary dynamics, outstanding issues remain.
First, the outcomes of these lattice simulations are very
sensitive to the exact rules of birth and death updates and
interaction pattern between nearest neighbors [7]; as a
result, these studies do not smoothly connect with
the well-understood dynamics in spatially homogeneous

(well-mixed) populations. Moreover, it is not clear whether
a model with a single nonmotile organism per site and
nearest neighbor interactions is a good description of any
species. Second, such models do not allow systematic
investigation of the role of migration and the magnitude
of number fluctuations, which are important for the appli-
cations of the theory to natural and experimental popula-
tions. Third, closely related voter models in two spatial
dimensions have very slow logarithmic coarsening [8]; 2D
simulations typically do not explore the time scales on
which spatial demixing of species becomes important.
Our Letter studies competition and cooperation in the

stepping-stone model of population genetics [9]. This
model preserves the dynamics of well-mixed populations
locally, but includes migrations as well as number fluctua-
tions, which are controlled by the population density. We
focus on a one-dimensional model because stochastic ef-
fects are more pronounced in lower spatial dimensions [4].
More important, the spread of mutualism in two dimen-
sions often occurs via a traveling reaction-diffusion wave,
where the most important dynamics often occurs at a
moving quasi-one-dimensional frontier [4]. We find that
mutualism persists in a much smaller region of parameter
space compared to well-mixed populations and that it is
more susceptible to spatial demixing when the benefits to
the interactants are unequal. The critical strength of mutu-
alism required to sustain cooperation increases with mi-
gration rate and population density. As the strength of
mutualism is reduced, the population undergoes a nonequi-
librium phase transition in the universality class of either
directed percolation (DP) or Z2 symmetric directed perco-
lation (DP2); see Ref. [10] for a comprehensive review of
DP models.
The stepping-stone model [9,11] consists of demes (is-

lands) arranged on a line, with spacing a. Each deme hasN
organisms, which can reproduce and migrate. During a
generation time �, organisms migrate to one of the nearest
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neighbors with probability m. Reproduction occurs within
a deme by selecting a random individual to die and another
individual to reproduce. The probability to be selected for
reproduction is proportional to an individual’s fitness. We
assume that the fitness is a sum of two contributions: a
background reproduction rate, scaled to one for all organ-
isms, and a benefit due to mutualistic interactions with
other organisms in the same deme (e.g., due to exchanging
nutrients). Let the benefit to the organism of type i from
interacting with the organism of type j be aij. If the type’s

fractions within a deme are fi, then the corresponding
fitnesses wi in a given generation are wi ¼ 1þP

jaijfj
because the increases in growth rate due to mutualism
should be weighted by the density of cooperating
organisms.

For simplicity, we consider only two cooperating species
(or genotypes) and let the frequency of species 1 be fðt; xÞ,
where t is time and x is position. The frequency of the other
species is then 1� fðt; xÞ. In the limit aij � 1, m � 1,

N � 1, we find a continuum description of this one-
dimensional stepping-stone model in terms of a general-
ized stochastic Fisher equation [4]

@f

@t
¼ sfð1� fÞðf� � fÞ þDs

@2f

@x2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dgfð1� fÞ

q
�ðt; xÞ; (1)

where �ðt; xÞ is an Itô delta-correlated Gaussian white
noise [11], Ds ¼ ma2=ð2�Þ is the spatial diffusion
constant, and Dg ¼ 2a=ðN�Þ is the strength of number

fluctuations. The key parameters s ¼ ð�1 þ �2Þ=� and
f� ¼ �1=s are given in terms of �1 ¼ a12 � a22 and �2 ¼
a21 � a11, which characterize the relative benefit of inter-
species versus intraspecies interactions. The selective ad-
vantage (or strength) of mutualism is given by s, while f�
is the equilibrium fraction of species 1 that would occur in
a spatially homogeneous population without number
fluctuations.

The usual mean-field treatment neglects spatial correla-
tions and fluctuations. With the neglect of the last two
terms, Eq. (1) becomes an ordinary differential equation,
and its dynamics can be easily analyzed. There are four
possible outcomes [11]. The population develops mutual-
ism when �1 and �2 > 0, one of the species outcompetes
the other when �1�2 < 0, and, when �1 and �2 < 0, the
population is bistable, with either species capable of out-
competing the other depending on the initial conditions.

Number fluctuations lead to local extinctions. In a finite
well-mixed population, a stochastic treatment must ac-
count for absorbing boundary conditions at f ¼ 0 and
f ¼ 1, when one of the two species goes extinct. The
absorbing boundaries arise because there is a finite proba-
bility to find the population in any of its discrete states
when the population size is finite. Therefore, after a suffi-
ciently long time, the population will reach one of the

absorbing boundaries and become fixed. The splitting
probabilities and fixation times can be calculated for this
zero-dimensional problem with fluctuations using the
Kolmogorov backward equations [11].
In a spatially extended population, however, local ex-

tinctions can be prevented or rescued through migration.
Suppose, in particular, that migrations are frequent and
mutualism is sufficiently strong to keep the population
near the equilibrium fraction f�. In this limit, we can
extend the mean-field approximation to account for fluc-
tuations and spatial degrees of freedom by replacing the
nonlinear reaction term in Eq. (1) with a linear one:

@f

@t
¼ sf�ð1� f�Þðf� � fÞ þDs

@2f

@x2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dgfð1� fÞ

q
�ðt; xÞ: (2)

If fðt; xÞ � f�, the error we make should be small; more
important, Eq. (2) can now be solved exactly. The solution
is most easily obtained in terms of the average spatial
heterozygosity Hðt; xÞ, a two-point correlation function
equal to the probability to sample two different species
distance x apart:

Hðt; xÞ ¼ hfðt; 0Þ½1� fðt; xÞ� þ fðt; xÞ½1� fðt; 0Þ�i: (3)

Using the Itô calculus, we derive the equation of motion for
Hðt; xÞ from Eq. (2),

@H

@t
¼

�

2Ds

@2

@x2
�Dg�ðxÞ

�

H þ sH�ðH� �HÞ; (4)

where �ðxÞ is the delta function, H� ¼ 2f�ð1� f�Þ, and
we, for simplicity, assumed that fð0; xÞ ¼ f�. The station-
ary solution, valid at long times, reads

Hð1; xÞ
H� ¼ 1� e�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sf�ð1�f�Þ=Ds

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8sDsH

�=D2
g

q : (5)

Since H� is the heterozygosity of a well-mixed population
with f ¼ f�, the fraction on the right-hand side is the
correction to the mean-field analysis. Thus, we see that,
for s � D2

g=Ds, the probability of the two species coex-

isting at any particular point in space [given by Hð1; 0Þ]
becomes small, which is inconsistent with mutualism and
our assumption that fðt; xÞ � f�. Hence, we anticipate a
critical value of s below which mutualismmust give way to
spatial demixing.
Although the hierarchy of moment equations does not

close for the original nonlinear problem given by Eq. (1),
the average spatial heterozygosity Hðt; xÞ is still useful for
characterizing the behavior of the system. In particular,
Hðt; 0Þ can be used to measure the local amount of mutu-
alism. Equation (5) suggests that Hðt; 0Þ reaches a nonzero
steady state value when s � D2

g=Ds. However, when
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s ¼ 0, the exact solution of Eq. (1) reveals that instead of

reaching a steady state, Hðt; 0Þ decays to zero as t�1=2 [4].
When species do not coexist locally, mutualism is impos-
sible. Hence, we can use the long time behavior of Hðt; 0Þ
to distinguish between populations where mutualism can
and cannot persist. See Ref. [11] for another quantity to
distinguish the phases, similar to the susceptibility in equi-
librium physics.

The phase diagram obtained from simulations is shown
in Fig. 1(c). The region of parameters where mutualism can
evolve is significantly reduced compared to the well-mixed
prediction (�1 > 0 and �2 > 0). In particular, mutualism
is impossible even for positive s, provided s is small.
Fluctuations and spatial structure also favor symmetric
mutualism, with �1 � �2, i.e., when the two species bene-
fit equally from the interaction. The mutualistic phase
[characterized by limt!1Hðt; 0Þ � 0] is separated from
the demixed phase [limt!1Hðt; 0Þ ¼ 0] by two lines of
second order phase transitions that meet in a cusp:
limt!1Hðt; 0Þ decreases continuously to zero as these lines
are approached.

Nonequilibrium phase transitions from an active
(mixed) to an absorbing (demixed) state have been studied
extensively; see Ref. [10]. Generically, when the absorbing
states are not symmetric, �1 � �2, the exit from mutual-
ism belongs to the DP universality class. We can most
readily see this for f� close to an absorbing boundary,
say, f� � 1. For large s, species 1 then remains at low
frequencies. As s decreased, some spatial regions stochas-
tically lose species 1, but the more abundant species 2
persists. Local extinctions are opposed by the spread of
species 1 from the nearby regions via Fisher waves. This
dynamics is just that of DP in [10]. When �1 ¼ �2, the
absorbing states are symmetric and the local extinctions of
either species are equally likely. As a result, this phase

transition belongs to DP2 universality class. We checked
that our simulations are consistent with the DP2 ‘‘bicritical
point’’ by calculating how Hðt; 0Þ decays for different
values of s in a population that is initially well mixed
[see Fig. 2(a)] and then collapsing these decay curves
onto a unique scaling function using DP2 exponents as
shown in Fig. 2(b). Equation (1) is also known to describe a
DP2 transition for f� ¼ 1=2 [12]. Although the DP2 tran-
sition occurs only at a point, it influences a large portion of
the phase diagram and governs the nonlinear shape of the
DP transition lines near this ‘‘bicritical point.’’
To understand how phase boundaries depend on the

parameters of the model, it is convenient to measure dis-
tance in the units ofDs=Dg and time in the units ofDs=D

2
g.

For �1 ¼ �2 ¼ 0, the new time unit is proportional to the
time of local demixing, and the new unit of distance to
the size of domain boundaries [4,13]. When Eq. (1) is
nondimensionalized, only two dimensionless parameters
remain, f� and ~s ¼ sDs=D

2
g. We confirm this data collapse

in simulations; see Fig. 2(c).
Spatial structure and number fluctuations change not

only the mutualistic region (�1 > 0 and �2 > 0), but also
the whole phase diagram for well-mixed populations [11].
In particular, there is no bistable phase in 1D spatial
populations. For almost all initial conditions, domains of
species 1 or species 2 appear because of number fluctua-
tions; the subsequent behavior can be analyzed in terms of
the Fisher wave velocities of the domain boundaries. For
�1 >�2, this velocity is directed from species 1 to species
2, and the direction is reversed for �1 <�2. As a result,
one of the species takes over, much like an equilibrium first
order phase transition proceeds through nucleation and
growth.
When �1 ¼ �2 and mutualism is unstable, the popula-

tion segregates into single species domains, and the

FIG. 1 (color online). Mutualism in the one-dimensional stepping-stone model [9,11]. The simulation parameters are chosen to
mimic bacterial colonies growing in a Petri dish [14]. (a) Spatial demixing for N ¼ 30, mN ¼ 1, and no interspecies interactions, all
aij ¼ 0. Green (light gray) and red (dark gray) represent species 1 and 2, respectively. Every deme and every tenth generation are

shown. (b) The same as in (a), but with strong mutualism a12 ¼ a21 ¼ 0:5. (c) Heat map of Hð4� 106; 0Þ from simulations with the
same parameters as in (a), but with 104 demes and varying a12 and a21.
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dynamics is driven by the random walks of domain
boundaries. For s > 0 this demixing is slowed down by
mutualism, but for s < 0 it is sped up initially due to the
reaction term in Eq. (1). After domains form, however,
more negative values of s lead to slower coarsening
because the diffusion constant of domain boundaries de-
creases. Surprisingly, the exactly solvable limit of �1 ¼
�2 ¼ 0 undergoes the fastest demixing in the long time
limit for large system sizes [11].

We have shown that number fluctuations can destroy
mutualism. This prediction can be tested most easily in
populations with weak migration and low effective popu-
lation densities because the expected critical selective
advantage of mutualism sc is proportional to D2

g=Ds.

Although Ds and Dg are rarely known for natural popula-

tions, they have been estimated in bacterial colonies [14].
With some limitations [14], our theory should be directly
applicable to these populations because the edge of a
growing colony is a quasi-one-dimensional population,
where the organisms not keeping up with the expansion
are effectively dead. Indeed, the competition of two
equally fit bacterial strains was accurately described by
Eq. (1) with s ¼ 0 [14]. For mutualistic versions of the two
species Escherichia coli and Pseudomonas aeruginosa
studied in Ref. [14], our theory predicts sc ¼ 0:21 and
sc ¼ 0:055, respectively. Fitness differences of such mag-
nitude can often be observed in microbial populations.
More important, the relative strength of mutualism can
be varied in the lab [15] allowing observation of the
predicted phase transition.

We are indebted to A. Murray and M. Mueller for
interesting us in mutualism and for frequent discussions
about the experimental situation. Work supported in
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Note added.—Recently, we learned of work by

Dall’Asta et al., Ref. [16], that discusses symmetric coop-
eration in a similar model, corresponding to f� ¼ 1=2 and
�1 ¼ �2 in our terminology. Our work was constructed
with experiments at microbial frontiers in mind; hence, it
differs due to its focus on asymmetric interactions �1 and
�2 of arbitrary sign and the large deme sizes in our
simulations.
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