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Recent numerical work [Z. Y. Meng et al., Nature (London) 464, 847 (2010)] indicates the existence of

a spin liquid (SL) phase that intervenes between the antiferromagnetic and semimetallic phases of the half

filled Hubbard model on a honeycomb lattice. To better understand the nature of this exotic phase, we

study the quantum J1 � J2 spin model on the honeycomb lattice, which provides an effective description

of the Mott insulating region of the Hubbard model. Employing the variational Monte Carlo approach, we

analyze the phase diagram of the model. We find three phases—antiferromagnetic, an unusual Z2 SL state,

and a dimerized state with spontaneously broken rotational symmetry. We identify the Z2 SL state as the

likely candidate for the SL phase of the Hubbard model.
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Introduction.—The Hubbard model describes electrons
hopping on a lattice and interacting via on-site Coulomb
interactions,

H ¼ �t
X

hiji;s
ayisajs þU

X

i

ni"ni#; (1)

where s ¼" , # denotes spin and nis ¼ ayisais. Despite its
conceptual simplicity, the Hubbard model exhibits a rich
phase diagram and is believed to capture the physics of the
high-temperature cuprate superconductors [1] (for a re-
view, see Ref. [2]). At half-filling and strong repulsion,
U � t, the Hubbard model is in a Mott insulator phase, in
which electrons are localized by strong Coulomb repul-
sion. The Mott insulator is characterized by a charge gap of
the order U, and, in the limit t � U the low-energy dy-
namics of this phase is associated with the spin degree of
freedom. The effective spin-spin interactions, which origi-
nate from virtual hopping processes and intertwine spins of
neighboring electrons, become increasingly frustrated as
the ratio U=t is lowered and the Mott transition is ap-
proached. In the vicinity of the Mott transition, the frus-
tration enhances quantum fluctuations, which can prevent
ordering of spins down to zero temperature, giving rise to
spin liquid (SL) ground states. The interest in SLs stems
from the fact that some of them exhibit new types of
topological order [3], and the fact that their properties
may be linked with the physics of the doped Hubbard
model [2].

Recently, the Hubbard model on the honeycomb lattice
at half-filling was studied using the determinantal quantum
Monte Carlo (DQMC) method [4]. This model has a crucial
advantage of being free of the sign problem, and therefore
the DQMC method gives essentially exact results for cor-
relators of the system. It was found that in the vicinity of the
Mott transition, the system exhibits a disordered spin phase.
This phase intervenes between the antiferromagnetic Néel
state realized at higher U=t � 4:3, and the semimetallic

phase at U=t < 3:5. The authors of Ref. [4] found that the
disordered phase shows a small but finite spin gap, and
preserves translational symmetry and time-reversal sym-
metry. This suggests that the disordered state on the honey-
comb lattice is a nonchiral SL.
In this Letter, we attempt to elucidate the nature of the

SL state on the honeycomb lattice. We study the effective
J1 � J2 spin model of the large-U Hubbard model. Using
the variational Monte Carlo (VMC) method, we find a
phase diagram (Fig. 1), which leads us to identify the
exotic phase seen in the Hubbard model as the sublattice
pairing state (SPS), a small-gap Z2 SL, first considered in
Refs. [5–7]. Our results should be contrasted with the
mean-field analysis of Ref. [5] which favors a gapless
SL, rather than a SPS, in the relevant parameter range.
We attribute the difference to the fact that the mean-field
approach [5] neglects essential gauge fluctuations, which
are accounted for by VMC.

FIG. 1 (color online). Phase diagram of the quantum J1 � J2
model, obtained using the variational Monte Carlo method. As
J2=J1 increases, the system undergoes a phase transition be-
tween an AFM state, and a gapped SL. We estimate the critical
value of J2=J1 ¼ x1 � 0:08. The arrow indicates the location for
this transition in the Hubbard model [4]. The SL state is best
described variationally by SPS. At higher J2=J1 ¼ x2 the SL
gives way to a dimerized phase. Our variational study gives an
estimate x2 � 0:3. The hashed area indicates values of J2=J1 that
correspond to values of U=t in the Hubbard model that are in the
Néel or SL state [4].
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Spin Hamiltonian.—We start from an effective spin
Hamiltonian, the J1 � J2 spin model,

H ¼ J1
X

hiji
Si � Sj þ J2

X

hhijii
Si � Sj; (2)

where hiji, hhijii denote nearest-neighbor and next-nearest-
neighbor sites. To establish the connection with the
Hubbard model, we calculate the parameters of the spin
model from the perturbation theory in ðt=UÞ2 [8], finding,
to second order in ðt=UÞ2, J1 ¼ 4 t2

U � 16 t4

U3 , J2 ¼ 4 t4

U3 .

The SL phase in the Hubbard model then ranges from
J2=J1 � 0:07 at the antiferromagnetic (AFM) transition
to J2=J1 � 0:12 at the semimetal transition. Note that
taking into account higher-order terms in the perturbation
theory in ðt=UÞ2 somewhat alters the values J2=J1 which
correspond to the SL in the Hubbard model [9]. Both
exchange couplings are antiferromagnetic; thus, the effec-
tive spin model is frustrated. In this study we ignore higher-
order terms in ðt=UÞ2 as well as third nearest-neighbor
and ring exchange terms [10]. At the relevant U=t � 4:3
higher-order terms are likely too small to affect the results
and third nearest-neighbor terms are nonfrustrating and
will primarily renormalize the effective J1.

Quantum fluctuations are particularly important in this
model as they are enhanced by the low coordination num-
ber of the honeycomb lattice and competition between the
J1 and J2 exchange interactions. We contrast the phase
diagram of the quantum model (Fig. 1) with that of the
classical J1 � J2 model. The latter model exhibits just two
phases: AFM, with opposite spin polarization on the two
sublattices of the honeycomb lattice, and (an incommen-
surate) spiral ordering [11,12], with a phase transition
occurring at J2=J1 ¼ 1=6. We find that the quantum fluc-
tuations drastically alter this phase diagram. The spiral
phase is destroyed at intermediate J2=J1, giving way
to a SL phase at J2=J1 < 0:3, and a dimerized phase at
J2=J1 * 0:3. The Néel state survives at small J2=J1 &
0:08, albeit with reduced magnetization. The transition
point between AFM and SL may be underestimated in
our variational study; exact diagonalization studies on
small clusters [13,14] suggest that the transition happens
at slightly higher value of J2=J1.

Ansätze.—The main goal of this work is to understand
the nature of the SL phase. Toward that end we focus on
two primary types of wave functions: (generalized) Huse-
Elser [15–18] states and resonating valence bond (RVB)
states [19,20]. The former of these is chosen as a good
ansatz for the AFM state. In the Huse-Elser wave function,
the phase of the wave function is fixed by the Marshall sign
rule and for the real part we optimize a separate variational
two-body parameter CðrÞ for each unique vector r.

The RVB state is represented as

jc RVBi ¼
X

fDg
AD

Y

i;j

j "i#j � #i"ji (3)

where fDg is a (generically non-nearest neighbor) dimer
covering of the lattice. Different choices for AD corre-
spond to qualitatively different types of wave functions.
RVB states are good ansätze for (gapped and gapless) spin-
liquid states as well as dimer states.
One approach for selecting these amplitudes is to write

down a large (but not complete) set of parameters specify-
ing the RVB amplitudes and then optimize over them. We
parameterize AD so as to be able to represent all BCS
Gutzwiller-projected states [19]. We call these generic
RVB states. Optimization for these (and the Huse-Elser)
states is done via stochastic optimization [21]. Because
optimization of a large set of parameters runs the risk of
being stuck in local minima, we are not guaranteed to find
the best state. Therefore, we also generate RVB amplitudes
in a more physically motivated way allowing for fewer
parameters.
This alternative approach uses the Schwinger fermion

representation of the spin model combined with Gutzwiller
projection [19]. In this approach, the spin operator on the
ith site is related to fermionic creation-annihilation opera-

tors f, fy as follows, S�i ¼ P
s;s0f

y
is�

�
ss0fis0 , and a constraint

of one fermion per site is imposed,
P

sf
y
isfis ¼ 1. Wave

functions of the spin model are obtained by Gutzwiller
projection of the fermionic many-body wave functions,
which projects out sites with double or no occupancies.
The fermionic wave functions are then generated as

ground states of a quadratic Hamiltonian on the honey-
comb lattice

HF ¼ �t
X

hiji;s
fyisfjs þ

X

ij

�ijðfyi"fyj# � fyi#f
y
j"Þ þ H:c: (4)

which includes nearest-neighbor hopping, and supercon-
ducting pairing. The parameters f�g are chosen in such a
way that the ground state energy of the projected wave
function is minimized.
An important advantage of the Schwinger fermion rep-

resentation is that there exist simple choices of f�g, with
hopping matrix elements between nearby neighbors which
describe different types of candidate SL states. Lee and
Lee [22], and later Hermele [23] conjectured the existence
of an algebraic spin liquid (ASL) on the honeycomb lattice,
which is characterized by gapless spin excitations with
a Dirac-like spectrum, similar to that in graphene. This
corresponds to the nearest-neighbor tight-binding model,
with �ij ¼ 0 for all i, j. Very recently, Lu and Ran [5]

analyzed possible SLs in the SU(2) PSG framework [24].
Here we will consider their candidate for a fully gapped
SL—the sublattice pairing state (SPS) [25] as well as the
s-wave SL (sSL) although the latter is believed to exhibit
valence bond order beyond mean field. sSL is obtained by
considering real �ij’s, which are rotationally and transla-

tionally invariant, for sites i, j which are nth nearest
neighbors or closer. SPS is characterized by complex pair-
ing amplitudes, with opposite phases on the two sublattices
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[5], �ij ¼ �ei�, i, j 2 A, �ij ¼ �e�i�, i, j 2 B where i, j

are next-nearest neighbors. In all the SL ansätze, the sym-
metries (translational, time-reversal, rotational symmetry)
of the honeycomb lattice are respected.

Results.—Using the VMC approach, we have mapped
out the energies of various phases, illustrated in Fig. 2. We
find a phase transition between AFM and SL at J2=J1 �
0:08. Both phases are also found in the Hubbard model
[4], and the transition point is remarkably close to that in
the Hubbard model. At higher frustration parameters
(J2=J1 > 0:3), we find the rotational symmetry of the
RVB states is broken giving a dimerized state a lower
energy then that of the SL phase. This is seen by optimiz-
ing RVB amplitudes up to third nearest neighbors (with the
other amplitudes fixed as in the ASL state) and is consistent
with findings from exact diagonalization and spin-wave
studies ([12–14]) where dimerized states have been sug-
gested. Having identified the location of the SL phase, we
turn to identifying its nature.

In establishing the form of SL state, we focus on the ASL
and the SPS state, which is variationally the lowest gapped
state we find. We do not consider sSL as our optimization
over generic RVB states (which includes sSL) does not find
a lower state then SPS. We notice that the energy difference
between ASL and SPS is very small, and a more careful
study is needed to distinguish between them.

To establish whether SPS is more favorable than the
ASL, we have optimized the SPS energy with respect
to pairing amplitude and phase. We first consider
J2=J1 ¼ 0:1, and a 14� 14 system. By mapping out the
energy as a function of �, � (see Fig. 3), we have estab-
lished the optimal values �=t � 0:1, � � 1:1.

The energy of the SPS state with those parameters is
lower than that of ASL, suggesting that ASL is unstable
with respect to pairing that opens a gap. However, the
energy gain due to the gap opening is so small that one
may doubt whether it survives in the thermodynamic limit.
To answer this question, we studied scaling of the energy

difference ESPS � EASL at the parameter values�=t ¼ 0:1,
� ¼ 1:1 as a function of system size L. The result, illus-
trated in Fig. 4, clearly shows that the energy difference
extrapolates to a nonzero value in the thermodynamic limit
1=L ! 0, indicating that SPS is the ground state.
To understand why SPS is favorable compared to other

gapped spin liquids in the regime where J1 and J2 inter-
actions are competing, we studied the properties of the
SPS wave function. We find that, unlike a generic SL, the
optimized SPS approximately satisfies the Marshall sign
rule, which is a necessary property to minimize J1 inter-
actions. The degree to which the Marshall sign is violated
can be quantified by the J1 energy gained if, for all c, the
sign (but not the amplitude) of�ðcÞ is altered so as to obey
the Marshall sign rule. From Fig. 3 we see this energy gain
for SPS is extremely small, which implies the sign rule is
nearly satisfied. Interestingly, the ASL wave function also

FIG. 2 (color online). Energies of AFM, ASL, SPS, and di-
merized phases compared for a 10� 10 system. The AFM state
is favorable at J2=J1 & 0:08; ASL and SPS states have energies
lower than the AFM state at J2=J1 * 0:08, but their energies are
very close. Spontaneous breaking of the rotational symmetry
occurs at J2=J1 � 0:3, giving rise to the dimerized state.

FIG. 3 (color online). Energies of the SPS state for different
values of pairing amplitude � as a function of pairing phase �
compared to the ASL energy (for system size 14� 14). The SPS
state is favored, and its energy is minimized for � � 0:1,
� � 1:1. * denotes energy gain in J1 if SPS exactly obeyed
the Marshall sign.

FIG. 4 (color online). Energy difference between a SPS state
with optimized (for 14� 14) pairing parameters (� � 0:1,
� � 1:1) and an ASL state as a function of system size. The
energy difference extrapolates to a nonzero value in the thermo-
dynamic limit L ! 1. Nonmonotonicity of the points is a result
of incommensurability effects with the lattice.
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(in fact exactly) obeys the Marshall sign rule. This is a
primary reason behind the ASL and SPS low energy.

We have repeated the comparison between energies for
ASL and SPS in the whole range of frustration parameter
0:05< J2=J1 < 0:25, finding that SPS state is favored in
the range 0:05< J2=J1 < 0:2, and at larger values of the
frustration parameter the energies of the two phases are
swapped. Additionally at these higher frustration parame-
ters, we find a generic RVB state that does not break
sublattice symmetry and has a lower energy then the
ASL state. Because we have not studied the finite-size
effects or optimized carefully the SPS parameters at these
higher frustration parameters, this could either point to a
series of phase transitions between the different states, or to
the SPS gap becoming too small to be resolved without
more careful optimization and finite size extrapolation.
Further work is needed to distinguish between these differ-
ent scenarios.

Having identified SPS as the variationally lowest energy
state, we look at the dimer-dimer correlation function for
an AFM and SL state (see Fig. 5). We find that the dimer-
dimer correlations of the SL state are positively (respec-
tively negatively) correlated on exactly the same dimers as
the Hubbard model at U=t � 4:0 [4]. It should be noted
that although the ASL state has a similar looking dimer
pattern, due to the small gap of the SPS, the AFM state
looks qualitatively different.

Discussion.—In conclusion, we have studied the J1 � J2
model on the honeycomb lattice, finding three phases—
AFM, SL phase, as well as VBS phase. We have accumu-
lated evidence that the SPS state describes the spin-liquid
phase seen in the Hubbard model. Beyond having the
transition happen near the correct place, we find it to be
the variational lowest energy state beating out the gapless
ASL state. Moreover, the dimer-dimer correlations closely
match those of the Hubbard model. Finally, we should
note that it is not clear whether the SPS state represents a
phase of matter that is distinct from the simplest short

ranged RVB phase obtained, e.g., in the quantum dimer
model [26].
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