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We solve a long-standing problem about a theoretical description of the upper critical magnetic field,

parallel to conducting layers and perpendicular to conducting chains, in a ðTMTSFÞ2ClO4 superconductor.

In particular, we explain why the experimental upper critical field, Hb0
c2 ’ 6 T, is higher than both the

quasiclassical upper critical field and the Clogston paramagnetic limit. We show that this property is due

to the coexistence of the hidden reentrant and Larkin-Ovchinnikov-Fulde-Ferrell phases in a magnetic

field in the form of three plane waves with nonzero momenta of the Cooper pairs. Our results are in good

qualitative and quantitative agreement with the recent experimental measurements of Hb0
c2 and support a

singlet d-wave-like scenario of superconductivity in ðTMTSFÞ2ClO4.

DOI: 10.1103/PhysRevLett.107.087004 PACS numbers: 74.70.Kn, 74.20.Rp, 74.25.Op

The physical properties of quasi-one-dimensional
(Q1D) organic conductors ðTMTSFÞ2X (X ¼ PF6, ClO4,
ReO4, etc.) have been intensively studied [1,2] since the
discovery of superconductivity in ðTMTSFÞ2PF6 [3]. Early
experiments [4,5] clearly showed that superconducting
phases in these compounds were unconventional and that
the corresponding order parameters changed their signs on
Q1D Fermi surfaces (FS). In particular, it was shown that
the Hebel-Slichter peak was absent in the NMR experiment
[4] and superconductivity was destroyed by nonmagnetic
impurities [5]. These results have been recently confirmed
in a number of publications (see, for example, Refs. [6,7]).
The first Knight shift measurements [7,8], performed in a
ðTMTSFÞ2PF6 conductor in a magnetic field H ¼ 1:43 T,
showed that the Knight shift was unchanged in the super-
conducting phase and were interpreted as evidence for
triplet superconductivity. On the other hand, more recent
Knight shift data [9], performed in a ðTMTSFÞ2ClO4 con-
ductor, clearly demonstrate the Knight shift change
through the superconducting transition in a magnetic field
H ¼ 0:957 T. They are interpreted [9] in terms of singlet
pairing in superconductor ðTMTSFÞ2ClO4 at least at rela-
tively weak magnetic fields.

Another source of information about a spin part of the
superconducting order parameter was provided by the fact
that the experimental upper critical magnetic field along
conducting chains, Ha

c2 [10], was clearly paramagnetically

limited [11]. This has been recently confirmed in
Refs. [12–14]. In addition, a new superconducting phase
has been discovered in ðTMTSFÞ2ClO4 [12,13] for a mag-
netic field, parallel to conducting chains. The suggested
hypothesis [12,13] that it can be the Larkin-Ovchinnikov-
Fulde-Ferrell (LOFF) phase [15,16] has recently been
theoretically supported [17]. Note that the above-
mentioned experimental and theoretical works are in favor
of a singlet d-wave-like scenario of superconductivity in a
ðTMTSTÞ2ClO4 [14,17–19].

In this situation, where support for a singlet d-wave-like
scenario of superconducting pairing in a ðTMTSTÞ2ClO4

conductor is growing, it is important to theoretically
reinvestigate the upper critical field, parallel to conducting

layers and perpendicular to conducting chains, Hb0
c2.

For many years, large experimental values of Hb0
c2

[10,12,13,20–23], which exceeds both the quasiclassical

upper critical field Hb0
c2ð0Þ [24] and the Clogston paramag-

netic limit Hp [25], have been considered as one of the

main arguments in favor of triplet superconductivity.

Although the exceeding of the values of Hb0
c2ð0Þ and Hp

was predicted for Hb0
c2 in both singlet and triplet cases

[26–30], it was also shown that, for realistic band parame-
ters of ðTMTSTÞ2X conductors, it can happen only in a
triplet case [11,20,26–30].
The goal of our Letter is to demonstrate that super-

conductivity in a ðTMTSFÞ2ClO4 can exceed both critical

magnetic fields Hb0
c2ð0Þ ’ 3:5 T and Hp ’ 2:7 T and reach

its experimental value, Hb0
c2 ’ 6 T [12,13,23], even in the

case of a singlet d-wave-like superconducting pairing. Our
first point is that the Pauli paramagnetic effects in all
previous theories [11,20,26–30] were not treated com-
pletely correctly. Our second point is that the 3D ! 2D
dimensional crossover [26] happens at magnetic fields

Hb0 ’ 5–6 T, which are much lower than previously
assumed. The latter statement is shown to result from
theoretical analysis of both the Ginzburg-Landau (GL)

slopes, dHb0
c2=dTjT¼Tc

and dHc
c2=dTjT¼Tc

, measured in

Refs. [12,13,23], and the so-called Lee-Naughton-Lebed
oscillations [31,32]. In this Letter, we derive a novel gap
equation, which accurately treats both the Pauli paramag-
netic and the orbital destructive effects against supercon-
ductivity. By analyzing this equation, we show that it

predicts the upper critical field, Hb0
c2 ’ 6 T, for real values

of band parameters in a ðTMTSFÞ2ClO4. The supercon-
ducting phase, which exists at such high magnetic fields, is
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shown to be very peculiar. It is characterized by an inho-
mogeneous order parameter in the form of the three
LOFF-like waves, which appear due to both the 3D ! 2D
dimensional crossover and the Pauli paramagnetic effects. It
is important that this phase is characterized by the Cooper
pairs, localized on conducting layers, with the probability of
the Cooper pair jumping from one layer to another being
small. Therefore, it is not destroyed by the orbital effects in
a parallel magnetic field. In the absence of the Pauli para-
magnetic effects, such a phase would correspond to the
reentrant superconductivity with dTc=dH > 0; therefore,
we call it the hidden reentrant superconducting phase.

Below we consider a tight-binding orthorhombic
model of an anisotropic Q1D electron spectrum in a
ðTMTSFÞ2ClO4 conductor,

�ðpÞ ¼ �2ta cosðpxa=2Þ � 2tb cosðpyb
0Þ � 2tc cosðpzc

�Þ;
(1)

which can be simplified near two slightly corrugated sheets
of Q1D FS as

���ðpÞ ¼ �vxðpyÞ½px � pFðpyÞ� � 2tc cosðpzc
�Þ: (2)

[Here ta � tb � tc correspond to electron hoping inte-
grals along a, b0, and c� axes, respectively, and þð�Þ
stands for the right (left) sheet of the FS.]

In a magnetic field, parallel to conducting planes and
perpendicular to conducting chains of a Q1D conductor,

H ¼ ð0; H; 0Þ; A ¼ ð0; 0;�HxÞ; (3)

we use the so-called Peierls substitution method, px �
pFðpyÞ ! �id=dx, pz ! pz � eAz=c. As a result, the ef-

fective Schrödinger equation for electron wave functions in
a mixed representation, c�ðx; py; pz; �Þ, can be written as

�
�ivxðpyÞ ddx� 2tc cos

�
pzc

� þ!c

vF

x

�
��B�H

�

� c�
� ðx; py; pz; �Þ ¼ ��c�

� ðpx; py; pz; �Þ; (4)

with the electron wave functions in a real space function
being

��
� ðx; y; z; �Þ ¼ exp½ipFðpyÞx� expðipyyÞ

� expðipzzÞc�
� ðx; py; pz; �Þ; (5)

where !c ¼ evFHc�=c, �B is the Bohr magneton, and
� ¼ �1 stands for spin-up and -down, respectively.
It is important that Eq. (4) can be analytically solved:

c�
� ðx; py; pz; �Þ

¼ exp½�i��x=vxðpyÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�vxðpyÞ

q exp

�
�i

�B�Hx

vxðpyÞ
�

� exp

�
�i

2tc
vxðpyÞ

Z x

0
cos

�
pzc

� þ!c

vF

u

�
du

�
; (6)

where wave functions (6) are normalized on �ð�1 � �2Þ,
�� ¼ �� �F. The corresponding finite temperature Green
functions can be derived from Eq. (6) by means of the
standard procedure [33]:

g�i!n
ðx;x1;py;pz;�Þ

¼�i
sgnð!nÞ
vxðpyÞ exp

�
�!nðx�x1Þ

vxðpyÞ
�
exp

�
�i

�B�Hðx�x1Þ
vxðpyÞ

�

�exp

�
�i

2tc
vxðpyÞ

Z x

x1

cos

�
pzc

�þ!c

vF

u

�
du

�
: (7)

[Note that, in contrast to previous works [11,20,26–30],
Eqs. (6) and (7) take into account the dependence of
electron velocity along conducting chains, vxðpyÞ, on a

momentum component py. As shown below, it allows us

to accurately describe the Pauli paramagnetic destructive
effects against superconductivity.]
In this Letter, we consider a singlet d-wave-like scenario

of superconductivity in a ðTMTSFÞ2ClO4 conductor
[14,17–19], which is consistent with all available experi-
mental data. Therefore, we introduce the following super-
conducting order parameter:

�ðpy; xÞ ¼
ffiffiffi
2

p
cosðpyb

0Þ�ðxÞ; (8)

where the first term,
ffiffiffi
2

p
cosðpyb

0Þ, is responsible for the

existence of zeros on Q1D FS, whereas the second term
describes both the orbital effects against superconductivity
and possible LOFF-like phase formation. Below, we derive
a so-called gap equation for the superconducting order
parameter (8), using the Green functions (7). It is derived
by means of the Gor’kov equations [33] for nonuniform
superconductivity (see, for example, Refs. [34–36]. As a
result of rather lengthy calculations, we obtain

�ðxÞ ¼ g0
Z dpy

vxðpyÞ
Z
jx�x1j>vxðpyÞ=�

2�Tdx1
vxðpyÞ sinh½2�Tjx� x1j=vxðpyÞ� J0

�
8tcvF

!cvxðpyÞ sin
�
!cðx� x1Þ

2vF

�

� sin

�
!cðxþ x1Þ

2vF

��
2cos2ðpyb

0Þ cos
�
2��BHðx� x1Þ

vxðpyÞ
�
�ðx1Þ; (9)
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where g0 stands for electron coupling constant, � is a
cutoff energy, parameter � takes into account possible
deviation of the so-called electron g factor, g ¼ 2�, from
the value g ¼ 2 [37]. We stress that Eq. (9) is different
from the gap equations used so far, and, unlike
Refs. [11,20,26–30], it describes accurately not only the
orbital effects but also the Pauli paramagnetic ones. Note
that Eq. (9) is based on a quantum-mechanical treatment of
electron motion both parallel and perpendicular to con-
ducting layers directions. It is the most general gap equa-
tion, which can be written for the Q1D conductor (2) in a
magnetic field (3). It is possible to show that the major
quantum parameter in Eq. (9) is 2tcvF=!cvxðpyÞ ’
2tc=!c. It is also possible to prove that in low magnetic
fields, where 2tc=!c � 1 and ðTc � TÞ=Tc � 1, Eq. (9) is
reduced to the well-known GL equation [38].

Let us estimate a value of the dimensionless quantum
parameter l?ðHÞ ¼ 2tc=!c in Eq. (9), which, using clas-
sical language, represents a size of electron trajectory
along the z axis in terms of interlayer distance [26]:

zðt; HÞ ¼ l?ðHÞc� cosð!ctÞ; (10)

where t is time. It is easy to show that

l?ðHÞ ¼ 2
ffiffiffi
2

p
�

�0

ac�H
tc
ta

’ 2� 103

HðTÞ
tc
tb

tb
ta
; (11)

where HðTÞ is a magnetic field, measured in teslas.
Here, according to Ref. [32], ta=tb ¼ 10 and, according

to Ref. [38], tc=tb ¼ ðb�= ffiffiffi
2

p
c�ÞðHc

c2=H
b0
c2ÞGL with

ðHc
c2=H

b0
c2ÞGL being a ratio of the GL slopes of the upper

critical fields along the c� and b0 axes, correspondingly
[39]. Note that the ratios ta=tb ¼ 10 [31] and

ðHb0
c2=H

c
c2ÞGL ¼ 26 [12,13] are very well measured in a

ðTMTSFÞ2ClO4 conductor. If we take HðTÞ ¼ 6 T, we
obtain

l?ðH ¼ 6 TÞ ’ 0:48; (12)

which means that a size of the electron classical trajectory
along the c� axis (10) is significantly less than the inter-
layer distance, c�. In this case, which corresponds to the
3D ! 2D dimensional crossover of electron motion in a
magnetic field [26,40], it is possible to make sure directly
from Eq. (9) that we can approximate the Bessel function
as J0ðzÞ ’ 1� z2=4.

Let us consider the above-mentioned approximation for
the integral equation (9) at zero temperature, T ¼ 0. It is
possible to show that the solution for a superconducting
gap, �ðxÞ, in this case can be written as

�ðxÞ ¼ expðikxÞ½1þ �1 cosð2!cx=vFÞ
þ �2 sinð2!cx=vFÞ�; (13)

where j�1j; j�2j � 1. Equation (9), which determines
the upper critical field, in the same approximation and at
T ¼ 0 can be expressed as

1

~g
¼

Z 2�=b0

0

dpyb
0

2�

Z 1

vF=�

dz

z
2cos2ðpyb

0Þ cos
�
2��bHz

vF

�

� vF

vxðpyÞ
�
1� 2l2?ðHÞsin2

�
!cz

2vF

��
cos

�
vxðpyÞ
vF

kz

�
;

(14)

where ~g is the renormalized electron coupling constant,
x1 � x ¼ zvxðpyÞ=vF. [Note that we set �1 ¼ �2 ¼ 0 in

Eq. (14), since we disregard all contributions of the order
of l4?ðHÞ � l2?ðHÞ to the upper critical field.]

Below, we simplify Eq. (14), taking into account that the
electron velocity component along the conducting x axis is

vxðpyÞ ¼ vF½1þ � cosðpyb
0Þ�; (15)

where � ¼ ffiffiffi
2

p
tb=ta ’ 0:14 [20]. More specifically,

Eq. (14) for � � 1 can be written as follows:

1

~g
¼

Z 1

vF=�

dz

z
cos

�
2��BHz

vF

�
cosðkzÞ½J0ð�kzÞ

� J2ð�kzÞ�
�
1� 2l2?ðHÞsin2

�
!cz

2vF

��
: (16)

It is important that Eq. (16) accurately takes into account
the Pauli paramagnetic effects against superconductivity,
unlike Refs. [11,20,26–30]. Note that, in the absence of
the Pauli paramagnetic effects (i.e., at � ¼ 0), Eq. (16)
describes the reentrant superconducting phase [26] with
dTc=dH > 0. Therefore, we call the superconducting
phase, described by Eqs. (16) and (18), the hidden reentrant
superconductivity.
Let us further simplify Eq. (16) by taking into account

the fact that

1

~g
¼

Z 1

vF=�

2�Tcdz

vF sinhð2�Tcz=vFÞ ; (17)

where Tc is the superconducting transition temperature at
H ¼ 0. As a result, we obtain

ln

�
H

H�

�
¼
Z 1

0

dz

z
cos

�
2��BHz

vF

��
cosðkzÞ½J0ð�kzÞ

�J2ð�kzÞ�
�
1�2l2?ðHÞsin2

�
!cz

2vF

��
�1

�
; (18)

where �BH
� ¼ �Tc=2	, 	 is the Euler constant.

Numerical analysis of Eq. (18) shows that the upper critical

field along the b0 axis, Hb0
c2, for l?ðHÞ ¼ 0:48 and

� ¼ 0:84 has a maximum at k ¼ 0:88ð2��BH=vFÞ and
is equal to

Hb0
c2 ’ 5:9 T: (19)

[We pay attention to the fact that the obtained value of the
upper critical field (19) well corresponds to the value of a
magnetic field (12).] For the same values of the parameters
l?ðHÞ and �, numerical analysis of Eq. (9) gives the
following values for factors �1 and �2 in Eq. (13):
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�1 ¼ �0:139; �2 ¼ 0:021i: (20)

Below we summarize the main results of the Letter. We
have derived gap equations (9), (14), (16), and (18), which,
unlike gap equations in the previous publications, take
accurately into account not only the orbital effects but
also the Pauli paramagnetic effects against superconduc-
tivity. We have analyzed the experimental data [12,13,32]
and shown that, in contrast to the common belief, the
quantum effects of electron motion in a magnetic field
[26,41] are strong in relatively weak magnetic fields of
the order of 5–6 T in a ðTMTSFÞ2ClO4 conductor. By
analyzing the above-mentioned gap equations, we have
explained how superconductivity in a ðTMTSFÞ2ClO4

can exceed both the quasiclassical upper critical field
[24] and the Clogston paramagnetic limit [25] and how it
can reach its experimental value, H ’ 6 T [12,13]. We
have shown that, due to the reentrant quantum effects
[26,41], superconductivity survives in the form of the
hidden reentrant superconducting phase, corresponding to
three LOFF-like phases. Although we have not calculated
in this Letter the phase diagram of the ðTMTSFÞ2ClO4

superconductor in all ranges of temperatures and magnetic
fields, we anticipate the existence of a phase transition
between the BCS and LOFF phases at H ’ 2:5 T, which
can be experimentally studied.

In conclusion, we note that the above-considered hidden
reentrant superconductivity is a rather general phenome-
non. It is expected to exist in other ðTMTSFÞ2X conductors
and may exist in quasi-two-dimensional superconductors
in a parallel magnetic field. Nevertheless, this phase in
ðTMTSFÞ2PF6 material, which is stable in a mixed
superconducting-spin-density-wave state [21,22,42] in a
magnetic field up to H ¼ 9 T, possesses some peculiar-
ities. Our preliminary analysis shows that, to describe the
hidden reentrant superconducting phase in ðTMTSFÞ2PF6,
it is necessary to take into account some additional
effects such as the singlet-triplet mixing phenomenon
[43] or possible singlet-triplet phase transition (see, for
example, [20,30]).
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