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We discuss the dynamic response of odd-frequency Cooper pairs to an electromagnetic field. By using

the quasiclassical Green function method, we calculate the impedance (Z ¼ R� iX) of a normal-metal

thin film which covers a superconductor. In contrast with the standard relation (i.e., R � X), the

impedance in spin-triplet proximity structures shows anomalous behavior (i.e., R> X) in the low

frequency limit. This unusual relation is a result of the penetration of odd-frequency pairs into the

normal metal and reflects the negative Cooper pair density.
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Exotic superconductors with an odd gap function
�ðk; !nÞ in the Matsubara frequency !n are called odd-
frequency (odd-!) superconductors. The mysterious be-
havior of odd-! Cooper pairs is an intriguing issue in the
physics of superconductivity and superfluidity [1,2]. An
odd-! superconductor might not exhibit the essential
properties of superconductivity such as the gapped quasi-
particle spectrum and the standard diamagnetic Meissner
effect. Unfortunately, the odd-! pairing state has yet to be
experimentally detected in bulk materials. Odd-frequency
Cooper pairs themselves, however, may exist in supercon-
ducting proximity structures. It was theoretically predicted
in ferromagnet/superconductor junctions that spin-mixing
due to spin-dependent potential should generate odd-!
spin-triplet s-wave pairs [3–7]. Manifestations of triplet
pairs were recently observed experimentally as a long-
range Josephson coupling across ferromagnets [8–11].
An alternative way of creating odd-! pairs was suggested
in proximity structures involving a normal metal attached
to an odd-parity spin-triplet superconductor that belongs
to the conventional even-frequency symmetry class. The
parity mixing due to inhomogeneity produces the odd-!
pairs [12].

Although the experiments [8–11] catch a sign of
odd-! pairs and theories [13–17] have predicted
unusual properties of spin-triplet superconducting junc-
tions, we have never had clear scientific evidence of
odd-! pairs. This is because physical values focused in
these studies include only indirect information of the
frequency symmetry. The present Letter shows that
the surface impedance is a particular physical value which
directly reflects the frequency symmetry of a Cooper pair.
We predict anomalous features of a surface impedance
which should make it possible to detect odd-! pairs
experimentally.

Surface impedance Z ¼ R� iX reflects the dynamic
response of Cooper pairs to an electromagnetic field
[18,19]. The surface resistance, R, corresponds to resist-
ance due to normal electrons. In conventional super-
conductors, R drops exponentially with decreasing
temperature below superconducting transition temperature
Tc. The reactance, X, represents power loss of the electro-
magnetic field due to Cooper pairs. Typical temperature
dependence of the surface impedance in a conventional
superconductor is shown in Fig. 1(a). The positive ampli-
tude of the Cooper pair density guarantees a robust relation
R � X at low temperatures. The validity of the relation
R< X, however, is questionable for odd-! Cooper pairs
because the odd-! symmetry and negative pair density are
inseparable from each other according to the standard
theory of superconductivity [20]. In the present Letter,
we conclude that the unusual relation R> X can be ob-
served in the presence of odd-! Cooper pairs at low
frequency and at low temperature.
Let us consider a bilayer of a superconductor and a thin

normal-metal film as shown in Fig. 1(b), where W is the
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FIG. 1 (color online). (a) Typical behavior of the surface im-
pedance in a conventional s-wave superconductor. (b) Proximity
structure under consideration, where a thin film of a normal metal
covers a superconductor.
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size of the superconductor and L is the thickness of the
normal metal. We mainly consider spin-triplet p-wave
symmetry in the superconductor and compare results
with those in spin-singlet s- and d-wave symmetries.
In all cases, the superconductor belongs to the conven-
tional even-frequency symmetry class. The even- and
odd-frequency pairs penetrate into the normal metal
for the spin-singlet and spin-triplet cases, respectively
[13,14,21]. We first solve the quasiclassical Usadel equa-
tion [22] in the standard � parametrization [23],
@Dr2�ðr; �Þ þ 2i� sin�ðr; �Þ ¼ 0, whereD is the diffusion
constant of the normal metal and � is the quasiparticle
energy measured from the Fermi level. In what follows, we
consider the normal-metal/superconductor (NS) junction
in two dimensions as shown in Fig. 1(b). We choose
W � L so that we can neglect y dependence of �. In the
p-wave case, we assume that a spin-triplet Cooper pair
consists of two electrons with opposite spin directions—
this assumption does not break the generality of the follow-
ing argument. The Usadel equation is supplemented by the
boundary condition at the NS interface which depends on
the pairing symmetry of the superconductor [13,24,25],
@x�ðx; �Þjx¼0 ¼ ðRD=RBÞðhFi=LTBÞ

hFi¼
Z �=2

��=2
d�

TN cos�ðfscos�0�gs sin�0Þ
ð2�TNÞþTNðgscos�0þfs sin�0Þ ; (1)

where � is the incident angle of a quasiparticle measured
from the x axis, �0 ¼ �ðx ¼ 0; �Þ, and RD is the resistance
of the normal metal. At the NS interface, a potential barrier
described by v0�ðxÞ suppresses the transmission probabil-

ity TB ¼ R�=2
0 d� cos�TN with TN ¼ cos2�=ðz20 þ cos2�Þ,

z0 ¼ v0=ð@vFÞ, and vF being the Fermi velocity. As a
result, the resistance of the NS interface becomes RB ¼
½ðe2=�@ÞðkFW=�ÞTB��1. The Green function in the
superconductor depends on � and the orientation angle

� in Fig. 1(b) as g� ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � j��j2

p
and f� ¼

i��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � j��j2

p
, where �� ¼ ��ð��Þ with � being

the amplitude of the pair potential, �þ ¼ �� � and �� ¼
�� �� �. The form factor �ð�Þ characterizes the pair-
ing symmetry as�ð�Þ ¼ 1, cos�, and cos2� for the s-, p-,
and d-wave symmetries, respectively. At a particular
orientation angle, the p wave with � ¼ 0, p wave with
� ¼ �=2, d wave with � ¼ 0, and d-wave with � ¼ �=4
correspond to the px, py, dx2�y2 , and dxy symmetry, re-

spectively. In Eq. (1), gs ¼ ðgþ þ g�Þ=� with � ¼ 1þ
gþg� þ fþf�, and fs ¼ ðfþ þ f�Þ=� for the spin-singlet
pairing symmetry, while fs ¼ iðfþg� � f�gþÞ=� for the
spin-triplet one [13,25]. For the chiral p-wave symmetry,
when �ð�Þ ¼ ei�, � obeys a boundary condition which is
slightly different from Eq. (1) [14]. At the outer surface of
the normal metal, we require @x�ðx; �Þjx¼�L ¼ 0. The
retarded Green functions are obtained as gðx; �Þ ¼
cos�ðx; �Þ and fðx; �Þ ¼ sin�ðx; �Þ.

Having found the Green functions, we can calculate
the local complex conductivity �Nðx;!Þ ¼ �1 þ i�2

which is represented only by the retarded Green function
as [26]

�1ðx;!Þ
�0

¼ 1

2@!

Z 1

�1
d�½Jð�þ @!Þ � Jð�Þ�K1; (2)

�2ðx;!Þ
�0

¼ 1

2@!

Z 1

�1
d�½Jð�þ @!ÞK2 þ Jð�ÞK3�; (3)

K1 ¼ fIð�ÞfIð�þ @!Þ þ gRð�ÞgRð�þ @!Þ; (4)

K2 ¼ fRð�ÞfIð�þ @!Þ � gIð�ÞgRð�þ @!Þ; (5)

K3 ¼ fRð�þ @!ÞfIð�Þ � gIð�þ @!ÞgRð�Þ; (6)

with Jð�Þ ¼ tanhð�=2kBTÞ, gRð�Þ ¼ Re½gðx; �Þ�, gIð�Þ ¼
Im½gðx; �Þ�, fRð�Þ ¼ Re½fðx; �Þ�, and fIð�Þ ¼ Im½fðx; �Þ�.
The local impedance in the normal metal is calculated from
the complex conductivity as

ZNðx;!Þ ¼ RN � iXN ¼ ð1� iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!

�0

�0

�Nðx;!Þ

s
Z0; (7)

where Z0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��0=�0c

2
@

p
, �0 is the amplitude of pair

potential at T ¼ 0, and �0 is the Drude conductivity in the
normal metal. The surface impedance in Fig. 1(a) is calcu-
lated from the above formula, taking the Green function of
a uniform s-wave superconductor.
The theory basically includes three junction parameters:

the thickness of the normal metal L, strength of the poten-
tial barrier z0, and the diffusion constant in the normal
metal D, which are converted to RD=RB, ETh ¼ @D=L2,
and z0 with ETh being the Thouless energy. As we discuss
later on, the results shown below depend on these parame-
ters only quantitatively. Thus we fix them at RD=RB ¼ 1,
ETh ¼ 0:5�0, and z0 ¼ 2:5 throughout this Letter,

which leads to TB � 0:1 and L � 2:7�Tc
with �Tc

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@D=2�kBTc

p
being the coherence length. We add a small

positive imaginary part i�	 to energy to provide the re-
tarded causality and to obtain reasonable convergence of
the integration in Eqs. (2) and (3). In real junctions, i�	
stems from inelastic scatterings of a quasiparticle. We fix
�	 at 0:01�0.
First, we compare the retarded Green functions at the

surface of the normal metal (x ¼ �L) for the s-wave
symmetry in Figs. 2(a) and 2(b) with those for the chiral
p wave in (d) and (e). The real part of the normal Green
function gRð�Þ is the quasiparticle density of states
normalized by the normal density of states at the Fermi
level. The normal Green function always satisfies gð��Þ ¼
½gð�Þ�� irrespective of pairing symmetry as shown in (a)
and (d). In the s-wave case, gRð�Þ shows a minigap for
j�j< �N 	 0:15�0. In the chiral p-wave case, gR in (d)
shows a large peak around � ¼ 0, which can be understood

PRL 107, 087001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

19 AUGUST 2011

087001-2



as the penetration of midgap Andreev resonant states [27]
into the normal metal. The penetration of such states into a
normal metal is possible only for spin-triplet junctions
[13,15]. The feature of the anomalous function fRð�Þ de-
pends on the pairing symmetry of the superconductor. The
results in (b) show that fRð�Þ is an even function of � and
fIð�Þ is an odd function of � (i.e., fð��Þ ¼ ½fð�Þ��). This
relation means the presence of the even-frequency Cooper
pairs in the normal metal and always holds for spin-singlet
NS structures. The results in (e), however, show fð��Þ ¼
�½fð�Þ��) [21]. This relation represents the penetration of
odd-frequency Cooper pairs into the normal metal and
holds for spin-triplet NS structures.

Second, we show the local impedance at the surface of
the normal metal ZNð�L;!Þ as a function of temperature
at a small @! fixed at 0:01�0 in Fig. 3. In the s-wave (a)
and dx2�y2 (b) symmetry, the results show conventional

behavior totally consistent with those in Fig. 1(a).
Namely, RN and XN satisfy the relation RN � XN . For
dxy and py symmetries, a relation R ¼ X always holds

irrespective of ! and T (results are not shown). This
reflects the skin effect of the normal metal because there
is no proximity effect in these symmetries [25,28]. In the
chiral p-wave symmetry in (c), on the other hand, RN

become larger than XN for T < Tc. A similar behavior
can be seen also in the px-wave symmetry for T < T� 	
0:4Tc as shown in (d). The impedance clearly exhibits
different characteristic behaviors depending on the pairing
symmetry of the superconductor. In Figs. (c) and (d), �2

changes its sign to negative. It is easy to confirm that
the sign change of �2 results in RN > XN in Eq. (7).
Thus RN > XN is a robust and universal property of
odd-frequency Cooper pairs.

To understand the characteristic feature of complex
conductivity at small !, we analyze the spectral pair
density defined by Ksð�Þ ¼ fRð�ÞfIð�Þ � gRð�ÞgIð�Þ ¼
Imf2ð�Þ which appears in the integrand of �2 in Eq. (3)
at very small !. The spectral pair density contains full
information about the frequency symmetry of Cooper
pairs. In the s-wave case, Ks in Fig. 2(c) is mostly positive
for � > 0 and has a positive peak around � ¼ �N . Since Ks

is an odd function of �, we only show the results for � > 0.
On the other hand in the chiral p-wave symmetry in
Fig. 2(f), Ks is mostly negative for � > 0 and has a large
negative peak near � ¼ 0 due to the odd-frequency sym-
metry. The Cooper pair density in the normal metal ns ¼R1
�1 d�Jð�ÞKsð�Þ and �2 are positive for the s-wave case.

On the other hand, they are negative for the chiral p-wave
case. Therefore we conclude that the negative �2 is the
direct consequence of the odd-frequency symmetry of
Cooper pairs. This argument generally holds when @! is
smaller than all energy scales relating to the proximity
effect. The smallest energy scale at the present calculation
is the peak width of the Green function shown in Fig. 2. We
have confirmed that T� in Fig. 3(d) increases to Tc with
decreasing !. The conclusion remains unchanged under
varying the junction parameters RD=RB, ETh, and z0, since
they do not affect the frequency symmetry of Cooper pairs.
Next, we briefly discuss the physics behind the negative

�2. The electric current in the normal metal may be
described by two contributions: j ¼ jN þ jS with the

normal current jN ¼ �0E and the supercurrent jS ¼
� nse

2

mc A ¼ i nse
2

m! E with m being the mass of electron

[29]. The complex conductivity then becomes �1 þ i�2 ¼
�0 þ i nse

2

m! . The positive value of ns is indispensable

for explaining the Meissner effect. This argument
can be easily confirmed by solving the magnetic field

FIG. 2 (color online). The retarded Green functions at the
surface of the normal metal for the s wave (a),(b) and the chiral
p-wave symmetry (d),(e). The solid and broken lines represents
the real and imaginary part of the Green function, respectively.
In (c) and (f), Ks is the spectral pair density and corresponds
to the kernel of the imaginary part of complex conductivity
at ! ! 0þ.

FIG. 3 (color online). Local impedance at a surface of the
normal metal (i.e., x ¼ �L) versus temperature at @! ¼
0:01�0 for (a) s-wave, (b) dx2�y2 -wave, (c) chiral p-wave, and

(d) px-wave symmetry. The impedance of a NS bilayer versus
temperature for (e) s-wave and (f) chiral p-wave symmetry.
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with r
H ¼ 4�
c jS. In the case of odd-frequency pairs,

however, ns becomes negative, which implies absence of
the Meissner effect. This fact also significantly modifies
the impedance of a NS bilayer defined by

ZNS ¼ RNS � iXNS ¼ �ZN

ZS cos �knL� i �ZN sin �knL
�ZN cos �knL� iZS sin �knL

; (8)

where ZS is the impedance of the superconductor shown in
Fig. 1(a). Since L being comparable to �Tc

, the conductiv-

ity depends on x only slightly in the normal metal,
which enables us to define spatially averaged values: the

conductivity ��N ¼ R
0
�L dx�NðxÞ=L, the impedance �ZN ¼

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�i!=ðc2 ��NÞ

p ¼ �RN � i �XN , and the wave number of

the electromagnetic field �kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i4�! ��N=c

2
p

. The sign
change of �2 results in the real value of �kn leading to the
absence of the Meissner effect. In Fig. 3, we show the
impedance of a NS bilayer for the s wave in (e) and
chiral p-wave NS junctions in (f), where we assume
the resistivity of a normal metal 
 ¼ ��1

0 is about

2
 10�6½� � cm�. In the s-wave symmetry, the impedance
of the NS bilayer [(e)] shows the conventional relation
RNS < XNS. In the chiral p-wave symmetry, on the other
hand, RNS goes beyond XNS at low temperature. In addi-
tion, the absence of the Meissner effect in the normal metal
causes the sign change of XNS. Using relations �XN � �RN

and ZS � �iXS, it is possible to show XNS � 0 at
�RN=XS ¼ tanfReð �knLÞg.
Finally, we briefly discuss realistic structures for observ-

ing the unusual impedance. One possible example is a
bilayer consisting of a normal metal and spin-triplet
chiral pwave superconductor Sr2RuO4 [30]. At the same
time, the proposed effect can also be observed in super-
conductor/ferromagnet structures [3]. An example of this
type is a bilayer of Nb=CrO2, where only odd-frequency
pairs can penetrate into the half-metallic ferromagnet
CrO2 [4–6,8].

In summary, we have theoretically studied the imped-
ance (Z ¼ R� iX) of a bilayer consisting of a normal
metal and a superconductor. For spin-singlet superconduct-
ing proximity structures, we found the conventional and
robust relation R � X. For spin-triplet ones, R can be
larger than X and X may change sign as a function of
temperature at low T. On the basis of obtained results, we
propose a method to analyze the spin symmetry of Cooper
pairs in a superconductor and to detect odd-frequency
superconductivity.
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