
Distributions of Waiting Times of Dynamic Single-Electron Emitters

Mathias Albert, Christian Flindt, and Markus Büttiker
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The distribution of waiting times between elementary tunneling events is of fundamental importance

for understanding the stochastic charge transfer processes in nanoscale conductors. Here we investigate

the waiting time distributions (WTDs) of periodically driven single-electron emitters and evaluate them

for the specific example of a mesoscopic capacitor. We show that the WTDs provide a particularly

informative characterization of periodically driven devices and we demonstrate how the WTDs allow us to

reconstruct the full counting statistics (FCS) of charges that have been transferred after a large number of

periods. We find that the WTDs are capable of describing short-time physics and correlations which are

not accessible via the FCS alone.
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Introduction.—Investigating the electrical fluctuations
in a nanoscale conductor is an attractive method to probe
and characterize the physical mechanisms and correlations
that determine a given quantum transport process [1]. In
one approach, the stochastic number of transferred parti-
cles during a long time interval, the so-called full counting
statistics (FCS), is studied [2]. FCS already has a signifi-
cant history in the theory of mesoscopic physics, and
recent measurements of current fluctuations in submicron
devices have shown that FCS is no longer just an interest-
ing theoretical concept [3]. It is also becoming an impor-
tant experimental tool to examine interaction and
coherence effects in nanoscale systems under out-of-
equilibrium conditions.

The FCS, however, does not provide a complete picture
of a charge transport process on all relevant time scales.
Conventionally, FCS is defined in the long-time limit,
where a large number of charges have passed through the
conductor. Only the zero-frequency components of the
current fluctuations can then be addressed and important
short-time physics may be lost. Recently, systematic theo-
ries of finite-frequency FCS have been developed in order
to calculate frequency-dependent noise and higher-order
cumulants [4], but at this point these methods are still
restricted to systems without any explicit time dependence.
An alternative and particularly intuitive characterization of
the charge transfer process is provided by the distribution
of time delays between subsequent physical events, also
known as the waiting time distribution (WTD).

While WTDs have been studied intensively in other
fields of science, e.g., in single molecule chemistry [5,6]
and in quantum optics [7,8], they have only received very
limited attention within the field of quantum transport.
Exceptions include a few theoretical works on nondriven
systems [9–11], but a conceptually simple example of a
nanoscale electronic system where the usefulness of WTDs
is clearly demonstrated has to date been missing. In this
Letter, we show that the WTDs of periodically driven

single-electron emitters, Fig. 1, provide a very useful
view on the charge transfer statistics and correlations in
such systems. In particular, we evaluate the WTDs of a
mesoscopic capacitor [12–14], which serves as a prime
example of the usefulness of WTDs. We derive expressions
for the WTDs which are applicable also to certain types of
quantum pumps [15–17] and nanoelectromechanical
systems [18]. We demonstrate how the WTDs not only
allow us to reconstruct and obtain the FCS of emitted
electrons, but additionally they contain information about
the charge transfer process on short time scales which is
not available in the FCS alone. As we show, the WTDs
describe the charge transfer process on all important time
scales.

FIG. 1 (color online). Single-electron emitter and waiting
times. (a) Nanoscale system coupled to source (S) and drain
(D) electrodes. Only a single electron at a time can occupy the
nanoscale system, e.g., because of strong Coulomb interactions.
Unidirectional transport takes place from source to drain due to
the periodically modulated rates �SðtÞ and �DðtÞ. (b) Current
pulses in the source (blue [dark gray]) and drain (red [light gray])
electrodes together with illustrations of the corresponding wait-
ing times �t (dashed lines) between elementary tunneling
events, absorption (a) and emission (e).
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System.—We focus on systems consisting of a source
and a drain electrode coupled to a nanoscale conductor,
Fig. 1(a), biased such that single-electron transport is
unidirectional from the source to the drain. The tunneling
rates to and from the conductor, �SðtÞ and �DðtÞ, respec-
tively, are time dependent. The probability PðtÞ for the
conductor to be occupied by an electron obeys the evolu-
tion equation

@tPðtÞ ¼ ��DðtÞPðtÞ þ �SðtÞ½1� PðtÞ�; (1)

where 1� PðtÞ is the probability for the conductor to be
empty. This model suffices to illustrate the basic concepts
of WTDs which are of interest here. We concentrate on
systems, similar to the ones mentioned in the Introduction,
where the tunneling rates are periodic in time, such that
��ðtÞ ¼ ��ðtþ TÞ, � ¼ S, D, with T being the period.

Waiting time distributions.—We consider the waiting
times between different tunneling events, Fig. 1(b).
These consist of events, where the conductor either absorbs
an electron from the source or emits an electron via the
drain. Because of the probabilistic nature of the charge
transfer, the waiting time �t between such events is itself a
random variable. We useweað�t; t0Þ [waeð�t; t0Þ] to denote
the probability for the first emission event to occur at time
�tþ t0 given that absorption occurred at the random ear-
lier time t0 [and similar for absorption following emission].
The same definitions apply to the WTDs for tunneling
events of the same type, weeð�t; t0Þ and waað�t; t0Þ.
Since the occupation of the conductor is either 0 or 1,
two events of the same kind cannot happen simultaneously
and weeð0; t0Þ ¼ waað0; t0Þ ¼ 0 for all t0. For nondriven
systems, where the tunneling rates are time independent,
translational invariance with respect to time implies that
the WTDs do not depend on t0 [10].

To calculate the WTDs we first express the source
and drain mean currents at time t0 as hISðt0Þi ¼
�Sðt0Þ½1� Pðt0Þ� and hIDðt0Þi ¼ �Dðt0ÞPðt0Þ. The cur-
rents are proportional to the probabilities of absorbing
and emitting an electron, respectively. Additionally,
we need the conditional currents, e.g., hIaDð�t; t0Þi ¼
�Dðt0 þ �tÞPað�t; t0Þ. Here, Pað�t; t0Þ is the survival
probability of an electron at time t0 þ �t given that i
t was absorbed at time t0, such that Pað0; t0Þ ¼ 1.
The survival probability Pað�t; t0Þ obeys Eq. (1) with
�SðtÞ ¼ 0, i.e., @�tP

að�t; t0Þ ¼ ��Dðt0 þ �tÞPað�t; t0Þ.
The WTD between absorption and emission is now
weað�t; t0Þ ¼ N eahISðt0ÞihIaDð�t; t0Þi, where N ea is a
normalization constant. The WTD is T-periodic in the
second time argument, weað�t; t0 þ TÞ ¼ weað�t; t0Þ.
This allows us to consider only the finite time interval
t0 2 ½0; T� and choose the normalization constant N ea,
such that

R
T
0 dt0

R1
0 dð�tÞweað�t; t0Þ ¼ 1.

At this point, the WTD depends not only on the waiting
time �t, but also on the absolute time t0 at which ab-
sorption occurred. We are only interested in the waiting
time itself and therefore integrate out t0. Defining �f ¼R
T
0 dt0fðt0Þ for a T-periodic function fðt0Þ, we find for

the WTD between absorption and emission

w eað�tÞ ¼ N eahISðt0ÞihIaDð�t; t0Þi: (2)

Similar reasoning for the WTD between emission and
absorption leads to the equivalent expression

waeð�tÞ ¼ N aehIDðt0ÞihIeSð�t; t0Þi; (3)

with the conditional current hIeSð�t; t0Þi ¼ �Sðt0 þ�tÞ
Peð�t; t0Þ. Here Peð�t; t0Þ is the survival probability of
the empty state. Proceeding along the same lines for the
WTDs between events of the same kind, we find

waað�tÞ ¼ N aa

Z �t

0
dð�t0ÞhISðt0ÞihIaDð�t0; t0ÞihIeSð�t� �t0; t0 þ�t0Þi;

weeð�tÞ ¼ N ee

Z �t

0
dð�t0ÞhIDðt0ÞihIeSð�t0; t0ÞihIaDð�t� �t0; t0 þ �t0Þi;

(4)

where the constants N aa and N ee ensure the normal-
izations

R1
0 dð�tÞwaað�tÞ ¼ 1 and

R1
0 dð�tÞweeð�tÞ ¼ 1,

respectively. In the expression forwaað�tÞ [weeð�tÞ],�t0 is
the time interval between the first absorption [emission]
event and the intermediate emission [absorption] event
which finally is followed by the second absorption [emis-
sion] event after the total waiting time �t.

Mesoscopic capacitor.—We now illustrate our findings
in terms of a specific example: a mesoscopic capacitor
consisting of a nanoscale cavity coupled to external reser-
voirs via a quantum point contact [12,13]. When subject to
fast periodic gate voltage modulations, the capacitor can
absorb and reemit single electrons at gigahertz frequencies.

The system can be described by Eq. (1) taking �SðtÞ ¼ �
and �DðtÞ ¼ 0 in the first half of the period, and �SðtÞ ¼ 0
and �DðtÞ ¼ � in the second half [14,19]. The tunneling
rate � can be controlled experimentally by adjusting elec-
trostatically the opening of the quantum point contact.
Following the steps described above we obtain a simple

expression for the WTD between emission and absorption
events

waeð�tÞ ¼ �"b�t=Tc

2ð1� "Þ fe
�j�aej � "2ej�aejg; (5)

where " ¼ e��T=2, �ae ¼ �½�t� ðb�t=Tc þ 1=2ÞT�,
and bxc is the integer part of x. The result contains two
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independent structures: an internal structure (in curly
brackets) which is periodic with T and an envelope (given

by "b�t=Tc) which is responsible for an exponential decay of
the WTD for large waiting times�t. For theWTD between
two emission events we find

w eeð�tÞ ¼
�b�tþT=2

T c"b�t�T=2
T c

2
fe�j�eej � "2ej�eejg (6)

with �ee ¼ �½�t� ðb�t=Tc þ 1ÞT�. Again, the WTD con-
sists of an envelope function and an internal structure.

Our analytic results are confirmed by numerical simula-
tions of the mesoscopic capacitor, Fig. 2. For large tunnel-
ing rates, Fig. 2(a), the transport process is predominantly
regular and periodic with one electron emitted almost
every cycle. The WTD has a single peak centered around
the period �t ’ T. The peak, however, is not sharp due to
the jitter in the emission process, causing phase noise [14].
As the tunneling rate is decreased, Fig. 2(b), a more
complicated structure appears with several equidistant
peaks separated by the period. Two emission events must
be separated by at least half a period implying that
weeð�tÞ ¼ 0 for �t < T=2. Interestingly, this short-time
behavior is not visible in the noise spectrum of the capaci-
tor found in Ref. [19]. For even smaller tunneling rates,
Figs. 2(c) and 2(d), the charge transport becomes increas-
ingly random, and subsequent electron emissions are typi-
cally separated by several periods. The current fluctuations
are then shot-noise-like and the overall shape of the WTD
is determined by the envelope function of the approximate

form �te�ð�=2Þ�t. This corresponds to the WTD for the
case, where both tunneling rates are kept constant as
�SðtÞ ¼ �DðtÞ ¼ �=2 for all t. As we show below, much
of this information is not available in the FCS alone.

Full counting statistics.—To connect the WTDs to the
FCS, the probabilityP ðn; NÞ of emitting n electrons during
a large number of periods N, we assume that maximally a
single electron can be emitted during a period. This is the
case for the mesoscopic capacitor considered above. We

can then write the probability distribution as P ðn;NÞ ¼P
m1;...;mn

eweeðm1Þ � � � eweeðmnÞ�m1þ...þmn;N , where eweeðmÞ is
the coarse-grained WTD for the number of periods m
between two subsequent emission events. The Kronecker
delta �m;N expresses the constraint that the sum of periods

between emission events m1 þ . . .þmn must equal the
total number of periods N. We have assumed that the
counting of emitted electrons starts right after an emission
event, but the specific choice of initial condition is not
important for the FCS after a large number of periods.
Next, we introduce the cumulant generating function

(CGF) Sð�;NÞ ¼ log
P

nP ðn;NÞei�n whose derivatives
with respect to the counting field � at � ¼ 0 yield the
cumulants of n as hhnkii ¼ @ki�Sð�;NÞj�!0. Additionally,

we define the discrete Laplace transform of eweeðmÞ,
êweeðzÞ ¼ P

m eweeðmÞe�mz and the corresponding CGF of

m, W eeðzÞ ¼ log êweeð�zÞ, which similarly delivers the
cumulants of m as hhmkii ¼ @kzW eeðzÞjz!0. We can then
express the CGF of n as

eSð�;NÞ ¼ 1

2�i

Z i�

�i�
dz

ezN

1� ei�þW eeð�zÞ : (7)

In the large-N limit, the integral is determined by the
particular pole z ¼ z0ð�Þ with z0ð0Þ ¼ 0 that solves the
equation

i�þW eeð�zÞ ¼ 0; (8)

such that Sð�;NÞ!Nz0ð�Þ. The electron current I � n=N
is the number of emitted electrons n over the number
of periods N, and z0ð�Þ thus generates the cumulants
of the current, i.e., hhIkii ¼ @ki�z0ð�Þj�!0. For the meso-

scopic capacitor, the large-N limit is reached for N �
maxf1; 1=�Tg.
Equation (8) demonstrates an important and intimate

connection between fluctuations in the current of emitted
electrons I and the number of periods m between emission
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FIG. 2 (color online). Waiting time distribution (WTD) for the mesoscopic capacitor. We show the WTD between subsequent
emission events weeð�tÞ for different values of the tunneling rate � in units of the inverse period of the driving T�1. The mean charge
emitted per period (the mean current) hhIii is also indicated. The analytic result, given by Eq. (6), is compared to numerical simulations
of the charge transport. For large values of �, (a), the charge transport is highly regular and periodic with the mean waiting time equal
to the period, hh�tii ¼ T. As � is reduced, (b), several peaks appear in the WTD. For even smaller values of �, (c) and (d), the mean
waiting time is much larger than the period, hh�tii � T, and the overall shape of the WTD is determined by the envelope curve shown
in blue. The mean charge emitted per period is then much smaller than 1.
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events. In general, the equation may be difficult to solve for
z ¼ z0ð�Þ, but it provides us with a simple and systematic
way of relating the current cumulants to the cumulants of
m: taking consecutive derivatives of the left-hand side with
respect to the counting field � evaluated at � ¼ 0, we find
for the average current hhIii ¼ 1=hhmii and the (normal-
ized) current cumulants Fk ¼ hhIkii=hhIii

F2 ¼ hhm2ii
hhmii2 ;

F3 ¼ 3
hhm2ii2
hhmii4 � hhm3ii

hhmii3 ;

F4 ¼ 15
hhm2ii3
hhmii6 � 10

hhm2iihhm3ii
hhmii5 þ hhm4ii

hhmii4 :

(9)

For nondriven systems, the number of periods m should
be replaced by the continuous waiting time �t. We then
recover the known relations hhIii ¼ 1=hh�tii and F2 ¼
hh�t2ii=hh�tii2 [8], see also Ref. [6]. Our derivation, how-
ever, allows us to determine current cumulants of any
order.

In Fig. 3 we show the FCS for the mesoscopic capacitor.
We performed separate numerical simulations of the
FCS and the WTD, and for comparison we then used
Eq. (9) to obtain the normalized current cumulants Fk

from the coarse-grained WTD. Additionally, from
Eq. (6) we found analytically the CGF of m, W eeðzÞ ¼
zþ 2 log½ð1� "Þ=ð1� "ezÞ�, and again used Eq. (9) to
obtain the Fk’s. The figure confirms the validity of
Eq. (9) and clearly illustrates that the FCS can be obtained
from the coarse-grained WTD. Importantly, the procedure
cannot be reversed: The WTD cannot be obtained from
the FCS. Moreover, comparing Figs. 2 and 3, substantial
information about the charge transfer process is obviously
lost in the FCS. In the phase noise regime, �T ¼ 10
[corresponding to Fig. 2(a)], the current cumulants are

close to zero due to the regular emission of electrons.
However, contrary to the WTD, the cumulants are not
sensitive to the jitter in the emission process. As the
tunneling rate is lowered, �T ¼ 2 [Fig. 2(b)], several peaks
appear in the WTD, but this is also not visible in the FCS,
neither is the fact that two emission events must be sepa-
rated by at least half a period. In the shot-noise regime,
�T ¼ 1, 0.2 [Figs. 2(c) and 2(d)], the cumulants approach
the limiting values Fk ! ð1=2Þk�1 corresponding to a
Poisson process with an effective charge of 1=2. This is
also a very different characterization compared to the one
provided by the WTDs.
Conclusions.—We have shown that the distribution of

waiting times between elementary tunneling events is a
useful tool to probe and characterize the charge fluctua-
tions and correlations of periodically driven single-electron
emitters on all important time scales. As a specific ex-
ample, we have considered a mesoscopic capacitor for
which we demonstrated that the WTDs contain consider-
able additional information compared to what is available
in the FCS alone.
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